Parallel sparse linear solver with GMRES method using minimization techniques of communications for GPU clusters

被引:0
|
作者
Lilia Ziane Khodja
Raphaël Couturier
Arnaud Giersch
Jacques M. Bahi
机构
[1] University of Franche-Comte,FEMTO
[2] IUT Belfort-Montbéliard,ST Institute
来源
关键词
Parallel GMRES; Cluster of GPUs; Communication reduction;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we aim at exploiting the power computing of a graphics processing unit (GPU) cluster for solving large sparse linear systems. We implement the parallel algorithm of the generalized minimal residual iterative method using the Compute Unified Device Architecture programming language and the MPI parallel environment. The experiments show that a GPU cluster is more efficient than a CPU cluster. In order to optimize the performances, we use a compressed storage format for the sparse vectors and the hypergraph partitioning. These solutions improve the spatial and temporal localization of the shared data between the computing nodes of the GPU cluster.
引用
收藏
页码:200 / 224
页数:24
相关论文
共 50 条
  • [31] Large Scale Parallel Hybrid GMRES Method for the Linear System on Grid System
    Zhang, Ye
    Bergere, Guy
    Petiton, Serge
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING, 2008, : 244 - 249
  • [32] High performance iterative solver for linear system using multi GPU
    Ikuno S.
    Fujita N.
    Kawaguchi Y.
    Itoh T.
    Nakata S.
    Watanabe K.
    Nakamura H.
    Plasma and Fusion Research, 2011, 6 (1 SPECIAL ISSUE)
  • [33] Web Application for Evaluating Performance of Linear System Solver Using GPU
    Ikuno, Soichiro
    Fujita, Norihisa
    Itoh, Taku
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 675 - +
  • [34] Interior point method and indefinite sparse solver for linear programming problems
    Runesha, H
    Nguyen, DT
    Belegundu, AD
    Chandrupatla, TR
    ADVANCES IN ENGINEERING SOFTWARE, 1998, 29 (3-6) : 409 - 414
  • [35] Using a sparse promoting method in linear programming approximations to schedule parallel jobs
    Chretien, Stephane
    Nicod, Jean-Marc
    Philippe, Laurent
    Rehn-Sonigo, Veronika
    Toch, Lamiel
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (14): : 3561 - 3586
  • [36] UNSYMMETRIC SPARSE LINEAR-EQUATION SOLVER BY THE ENVELOPE METHOD - SPLNEQ
    JUDICE, JJ
    MITRA, G
    TAMIZ, M
    OPERATIONS RESEARCH LETTERS, 1987, 6 (05) : 257 - 258
  • [37] A parallel sparse linear solver for nearest-neighbor tight-binding problems
    Luisier, Mathieu
    Klimeck, Gerhard
    Schenk, Andreas
    Fichtner, Wolfgang
    Boykin, Timothy B.
    EURO-PAR 2008 PARALLEL PROCESSING, PROCEEDINGS, 2008, 5168 : 790 - 800
  • [38] A parallel sparse linear system solver based on Hermitian/skew-Hermitian splitting
    Zhang, Zhengyi
    Sameh, Ahmed H.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (08) : 2000 - 2007
  • [39] PSPASES: Building a high performance scalable parallel direct solver for sparse linear systems
    Joshi, MV
    Karypis, G
    Kumar, V
    Gupta, A
    Gustavson, F
    PARALLEL NUMERICAL COMPUTATION WITH APPLICATIONS, 1999, 515 : 3 - 18
  • [40] Hybrid parallel iterative sparse linear solver framework for reservoir geomechanical and flow simulation
    Gasparini, Leonardo
    Rodrigues, Jose R. P.
    Augusto, Douglas A.
    Carvalho, Luiz M.
    Conopoima, Cesar
    Goldfeld, Paulo
    Panetta, Jairo
    Ramirez, Joao P.
    Souza, Michael
    Figueiredo, Mateus O.
    Leite, Victor M. D. M.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 51