Which posets have a scattered MacNeille completion?

被引:0
|
作者
Maurice Pouzet
Hamza Si Kaddour
Nejib Zaguia
机构
[1] Université Claude-Bernard,LaPCS, Mathématiques
[2] Université d’Ottawa,SITE
来源
algebra universalis | 2005年 / 53卷
关键词
06A07; 06B23; 03E02; MacNeille completion; scattered posets; partition theorems;
D O I
暂无
中图分类号
学科分类号
摘要
A poset is order-scattered if it does not embed the chain η of the rational numbers. We prove that there are eleven posets such that N(P), the MacNeille completion of P, is order-scattered if and only if P embeds none of these posets. Moreover these posets are pairwise non-embeddable in each other. This result completes a previous characterisation due to Duffus, Pouzet, Rival [4]. The proof is based on the “bracket relation”: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta \to [\eta ]^{2}_{3} ,$$\end{document} a famous result of F. Galvin.
引用
收藏
页码:287 / 299
页数:12
相关论文
共 50 条