Which posets have a scattered MacNeille completion?

被引:0
|
作者
Maurice Pouzet
Hamza Si Kaddour
Nejib Zaguia
机构
[1] Université Claude-Bernard,LaPCS, Mathématiques
[2] Université d’Ottawa,SITE
来源
algebra universalis | 2005年 / 53卷
关键词
06A07; 06B23; 03E02; MacNeille completion; scattered posets; partition theorems;
D O I
暂无
中图分类号
学科分类号
摘要
A poset is order-scattered if it does not embed the chain η of the rational numbers. We prove that there are eleven posets such that N(P), the MacNeille completion of P, is order-scattered if and only if P embeds none of these posets. Moreover these posets are pairwise non-embeddable in each other. This result completes a previous characterisation due to Duffus, Pouzet, Rival [4]. The proof is based on the “bracket relation”: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta \to [\eta ]^{2}_{3} ,$$\end{document} a famous result of F. Galvin.
引用
收藏
页码:287 / 299
页数:12
相关论文
共 50 条
  • [1] Which posets have a scattered MacNeille completion?
    Pouzet, M
    Kaddour, HS
    Zaguia, N
    [J]. ALGEBRA UNIVERSALIS, 2005, 53 (2-3) : 287 - 299
  • [2] The MacNeille Completions for Residuated S-Posets
    Zhang, Xia
    Paseka, Jan
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (02) : 667 - 676
  • [3] The MacNeille Completions for Residuated S-Posets
    Xia Zhang
    Jan Paseka
    [J]. International Journal of Theoretical Physics, 2021, 60 : 667 - 676
  • [4] CATEGORICAL CHARACTERIZATION OF MACNEILLE COMPLETION
    BANASCHEWSKI, B
    BRUNS, G
    [J]. ARCHIV DER MATHEMATIK, 1967, 18 (04) : 369 - +
  • [5] INTERVAL DIMENSION AND MACNEILLE COMPLETION
    HABIB, M
    MORVAN, M
    POUZET, M
    RAMPON, JX
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1993, 10 (02): : 147 - 151
  • [6] The Dedekind-MacNeille completions for fuzzy posets
    Xie, Weixian
    Zhang, Qiye
    Fan, Lei
    [J]. FUZZY SETS AND SYSTEMS, 2009, 160 (16) : 2292 - 2316
  • [7] A generalization of the Dedekind–MacNeille completion
    Zhongxi Zhang
    Qingguo Li
    [J]. Semigroup Forum, 2018, 96 : 553 - 564
  • [8] On the MacNeille completion of weakly dicomplemented lattices
    Kwuida, Lonard
    Seselja, Branimir
    Tepavcevic, Andreja
    [J]. Formal Concept Analysis, Proceedings, 2007, 4390 : 271 - 280
  • [9] THE DEDEKIND-MACNEILLE COMPLETION AS A REFLECTOR
    ERNE, M
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1991, 8 (02): : 159 - 173
  • [10] MacNeille completions of D-posets and effect algebras
    Riecanová, Z
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (03) : 859 - 869