We study analytically the physical and mathematical properties of spatially regular massless scalar field configurations which are non-minimally coupled to the electromagnetic field of a spherically symmetric charged reflecting shell. In particular, the Klein–Gordon wave equation for the composed charged-reflecting-shell-nonminimally-coupled-linearized-massless-scalar-field system is solved analytically. Interestingly, we explicitly prove that the discrete resonance spectrum {Rs(Q,α,l;n)}n=1n=∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{R_{\text {s}}(Q,\alpha ,l;n)\}^{n=\infty }_{n=1}$$\end{document} of charged shell radii that can support the non-minimally coupled massless scalar fields can be expressed in a remarkably compact form in terms of the characteristic zeros of the Bessel function (here Q, α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha $$\end{document}, and l are respectively the electric charge of the central supporting shell, the dimensionless non-minimal coupling parameter of the Maxwell-scalar theory, and the angular harmonic index of the supported scalar configuration).