Charged reflecting shells supporting non-minimally coupled massless scalar field configurations

被引:0
|
作者
Shahar Hod
机构
[1] The Ruppin Academic Center,
[2] The Hadassah Academic College,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study analytically the physical and mathematical properties of spatially regular massless scalar field configurations which are non-minimally coupled to the electromagnetic field of a spherically symmetric charged reflecting shell. In particular, the Klein–Gordon wave equation for the composed charged-reflecting-shell-nonminimally-coupled-linearized-massless-scalar-field system is solved analytically. Interestingly, we explicitly prove that the discrete resonance spectrum {Rs(Q,α,l;n)}n=1n=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{R_{\text {s}}(Q,\alpha ,l;n)\}^{n=\infty }_{n=1}$$\end{document} of charged shell radii that can support the non-minimally coupled massless scalar fields can be expressed in a remarkably compact form in terms of the characteristic zeros of the Bessel function (here Q, α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, and l are respectively the electric charge of the central supporting shell, the dimensionless non-minimal coupling parameter of the Maxwell-scalar theory, and the angular harmonic index of the supported scalar configuration).
引用
收藏
相关论文
共 50 条