Multiplicative convolutions of functions from Lorentz spaces and convergence of series of Fourier–Vilenkin coefficients

被引:0
|
作者
Volosivets S.S. [1 ]
Kuznetsova M.A. [1 ]
机构
[1] Saratov State National Research University, ul. Astrakhanskaya 33, Saratov
关键词
best approximation; Fourier coefficients; Lorentz space; multiplicative convolution; multiplicative system;
D O I
10.3103/S1066369X17050048
中图分类号
学科分类号
摘要
Let f and g be functions from different Lorentz spaces Lp, q[0, 1), h be theirmultiplicative convolution and xxxx be Fourier coefficients of h with respect to a multiplicative system with bounded generating sequence. We estimate the remainder of the series of xxxx with multiplicators of type kb in terms of the best approximations of f and g in the corresponding Lorentz spaces. We establish sharpness of this result and of its corollaries for the Lebesgue spaces. © 2017, Allerton Press, Inc.
引用
收藏
页码:26 / 37
页数:11
相关论文
共 50 条
  • [41] Norm convergence of double Fourier series on unbounded Vilenkin groups
    G. Gát
    U. Goginava
    Acta Mathematica Hungarica, 2017, 152 : 201 - 216
  • [42] Norm convergence of double Fourier series on unbounded Vilenkin groups
    Gat, G.
    Goginava, U.
    ACTA MATHEMATICA HUNGARICA, 2017, 152 (01) : 201 - 216
  • [43] Summability of the Fourier coefficients of functions from anisotropic Lorentz space
    Nursultanov, Erlan
    Tleukhanova, Nazerke
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016), 2016, 1759
  • [44] Convergence of Mock Fourier Series on Generalized Bernoulli Convolutions
    Fu, Yan-Song
    Tang, Min-Wei
    Wen, Zhi-Ying
    ACTA APPLICANDAE MATHEMATICAE, 2022, 179 (01)
  • [45] Convergence of Mock Fourier Series on Generalized Bernoulli Convolutions
    Yan-Song Fu
    Min-Wei Tang
    Zhi-Ying Wen
    Acta Applicandae Mathematicae, 2022, 179
  • [46] On almost everywhere convergence of Fourier series on unbounded Vilenkin groups
    Gat, Gyoergy
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2009, 75 (1-2): : 85 - 94
  • [47] On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups
    Avdispahic, M.
    Memic, N.
    ACTA MATHEMATICA HUNGARICA, 2010, 129 (04) : 381 - 392
  • [48] Convergence of Series of Fourier Coefficients of p-Absolutely Continuous Functions
    S. S. Volosivets
    Analysis Mathematica, 2000, 26 (1) : 63 - 80
  • [49] Convergence abscissas for Dirichlet series with multiplicative coefficients
    Brevig, Ole Fredrik
    Heap, Winston
    EXPOSITIONES MATHEMATICAE, 2016, 34 (04) : 448 - 453
  • [50] ABSOLUTE CONVERGENCE OF SERIES OF FOURIER COEFFICIENTS
    MITYAGIN, BS
    DOKLADY AKADEMII NAUK SSSR, 1964, 157 (05): : 1047 - &