Parametric embedding of nonparametric inference problems

被引:1
|
作者
Alvo M. [1 ]
Lai T.L. [2 ]
Yu P.L.H. [3 ]
机构
[1] Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON
[2] Department of Statistics, Stanford University, Stanford, CA
[3] Department of Statistics and Actuarial Science, The University of Hong Kong
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
censored and truncated data; hazard rank tests; nonparametric inference; Parametric embedding; smooth tests;
D O I
10.1080/15598608.2017.1399840
中图分类号
学科分类号
摘要
In 1937, Neyman introduced the notion of smooth tests of the null hypothesis that the sample data come from a uniform distribution on the interval (0,1) against alternatives in a smooth parametric family. This idea can be used to embed various nonparametric inference problems in a parametric family. Focusing on nonparametric rank tests, we show how to derive traditional rank tests by applying this approach. We also show how to use it to obtain simplifying insights and optimality results in complicated settings that involve censored and truncated data, for which it is more convenient to use hazard functions to define the embedded family. We describe an application of the embedding approach to the problem of testing for trend in environmental studies. © 2018 Grace Scientific Publishing, LLC.
引用
收藏
页码:151 / 164
页数:13
相关论文
共 50 条
  • [1] Bayesian parametric inference in a nonparametric framework
    Stephen G. Walker
    Eduardo Gutiérrez-Peña
    [J]. TEST, 2007, 16 : 188 - 197
  • [2] Bayesian parametric inference in a nonparametric framework
    Walker, Stephen G.
    Gutierrez-Pena, Eduardo
    [J]. TEST, 2007, 16 (01) : 188 - 197
  • [3] MatchIt: Nonparametric Preprocessing for Parametric Causal Inference
    Ho, Daniel E.
    Imai, Kosuke
    King, Gary
    Stuart, Elizabeth A.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2011, 42 (08):
  • [4] Parameterization and inference for nonparametric regression problems
    Jiang, WX
    Kipnis, V
    Midthune, D
    Carroll, RJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 : 583 - 591
  • [5] Nonparametric predictive inference for combining diagnostic tests with parametric copula
    Muhammad, Noryanti
    Coolen, F. P. A.
    Coolen-Maturi, T.
    [J]. 1ST INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS 2017 (ICOAIMS 2017), 2017, 890
  • [6] Inference for cumulative incidence quantiles via parametric and nonparametric approaches
    Lee, Minjung
    Fine, Jason P.
    [J]. STATISTICS IN MEDICINE, 2011, 30 (27) : 3221 - 3235
  • [7] Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data
    Faes, C.
    Ormerod, J. T.
    Wand, M. P.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (495) : 959 - 971
  • [8] Parametric versus nonparametric tolerance regions in detection problems
    Amparo Baíllo
    Antonio Cuevas
    [J]. Computational Statistics, 2006, 21 : 523 - 536
  • [9] A Bayesian Inference Based Computational Tool for Parametric and Nonparametric Medical Diagnosis
    Chatzimichail, Theodora
    Hatjimihail, Aristides T.
    [J]. DIAGNOSTICS, 2023, 13 (19)
  • [10] Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference
    Ho, Daniel E.
    Imai, Kosuke
    King, Gary
    Stuart, Elizabeth A.
    [J]. POLITICAL ANALYSIS, 2007, 15 (03) : 199 - 236