Variational representations related to Tsallis relative entropy

被引:0
|
作者
Guanghua Shi
Frank Hansen
机构
[1] Yangzhou University,School of Mathematical Sciences
[2] Copenhagen University,Department of Mathematical Sciences
来源
关键词
Gibbs variational principle; Golden–Thompson inequality; Lieb’s concavity theorem; Tsallis relative entropy; Variational representation; 94A17; 81P45; 47A63; 52A41;
D O I
暂无
中图分类号
学科分类号
摘要
We develop variational representations for the deformed logarithmic and exponential functions and use them to obtain variational representations related to the quantum Tsallis relative entropy. We extend Golden–Thompson’s trace inequality to deformed exponentials with deformation parameter q∈[0,1],\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\in [0,1], $$\end{document} thus complementing the second author’s previous study of the cases with deformation parameter q∈[1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\in [1,2]$$\end{document} and q∈[2,3]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ q\in [2,3]$$\end{document}.
引用
收藏
页码:2203 / 2220
页数:17
相关论文
共 50 条
  • [1] Variational representations related to Tsallis relative entropy
    Shi, Guanghua
    Hansen, Frank
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (08) : 2203 - 2220
  • [2] On uniqueness theorems for Tsallis entropy and Tsallis relative entropy
    Furuichi, S
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (10) : 3638 - 3645
  • [3] MONOTONICITY OF A TRACE RELATED TO TSALLIS RELATIVE OPERATOR ENTROPY
    Xu, Jiahang
    Shi, Jian
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (03): : 729 - 733
  • [4] ON SOME TSALLIS RELATIVE OPERATOR ENTROPY PROPERTIES RELATED TO HELLINGER METRICS
    El Hilali, Abdenbi
    Chergui, Mohamed
    El Wahbi, Bouazza
    [J]. PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2022, 48 (02): : 259 - 273
  • [5] ESTIMATES FOR TSALLIS RELATIVE OPERATOR ENTROPY
    Moradi, Hamid Reza
    Furuichi, Shigeru
    Minculete, Nicusor
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (04): : 1079 - 1088
  • [6] Variational representations related to quantum Renyi relative entropies
    Shi, Guanghua
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 610 : 257 - 273
  • [7] Tsallis Relative Entropy and Anomalous Diffusion
    Prehl, Janett
    Essex, Christopher
    Hoffmann, Karl Heinz
    [J]. ENTROPY, 2012, 14 (04) : 701 - 716
  • [8] Fundamental properties of Tsallis relative entropy
    Furuichi, S
    Yanagi, K
    Kuriyama, K
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (12) : 4868 - 4877
  • [9] Inequalities for relative operator entropy in terms of Tsallis' entropy
    Dragomir, S. S.
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (04)
  • [10] Relative entropy and Tsallis entropy of two accretive operators
    Raissouli, Mustapha
    Moslehian, Mohammad Sal
    Furuichi, Shigeru
    [J]. COMPTES RENDUS MATHEMATIQUE, 2017, 355 (06) : 687 - 693