Relative entropy and Tsallis entropy of two accretive operators

被引:44
|
作者
Raissouli, Mustapha [1 ,2 ]
Moslehian, Mohammad Sal [3 ]
Furuichi, Shigeru [4 ]
机构
[1] Taibah Univ, Fac Sci, Dept Math, POB 30097, Al Madinah Al Munawwarah 41477, Saudi Arabia
[2] Moulay Ismail Univ, Fac Sci, Dept Math, Meknes, Morocco
[3] Ferdowsi Univ Mashhad, Dept Pure Math, POB 1159, Mashhad 91775, Iran
[4] Nihon Univ, Coll Humanities & Sci, Dept Informat Sci, Setagaya Ku, 3-25-40 Sakurajyousui, Tokyo 1568550, Japan
关键词
HILBERT-SPACE OPERATORS; MEANS INEQUALITIES; MATRICES; PART;
D O I
10.1016/j.crma.2017.05.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A and B be two accretive operators. We first introduce the weighted geometric mean of A and B together with some related properties. Afterwards, we define the relative entropy as well as the Tsallis entropy of A and B. The present definitions and their related results extend those already introduced in the literature for positive invertible operators. (C) 2017 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
下载
收藏
页码:687 / 693
页数:7
相关论文
共 50 条
  • [1] On uniqueness theorems for Tsallis entropy and Tsallis relative entropy
    Furuichi, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (10) : 3638 - 3645
  • [2] Inequalities for relative operator entropy in terms of Tsallis' entropy
    Dragomir, S. S.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (04)
  • [3] ESTIMATES FOR TSALLIS RELATIVE OPERATOR ENTROPY
    Moradi, Hamid Reza
    Furuichi, Shigeru
    Minculete, Nicusor
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (04): : 1079 - 1088
  • [4] Tsallis Relative Entropy and Anomalous Diffusion
    Prehl, Janett
    Essex, Christopher
    Hoffmann, Karl Heinz
    ENTROPY, 2012, 14 (04) : 701 - 716
  • [5] Fundamental properties of Tsallis relative entropy
    Furuichi, S
    Yanagi, K
    Kuriyama, K
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (12) : 4868 - 4877
  • [6] Variational representations related to Tsallis relative entropy
    Guanghua Shi
    Frank Hansen
    Letters in Mathematical Physics, 2020, 110 : 2203 - 2220
  • [7] Fuzzy Divergences Based on Tsallis Relative Entropy
    Rong, Lan
    Jiu-lun, Fan
    QUANTITATIVE LOGIC AND SOFT COMPUTING 2010, VOL 2, 2010, 82 : 359 - 368
  • [8] Coherence measure in terms of the Tsallis relative α entropy
    Haiqing Zhao
    Chang-shui Yu
    Scientific Reports, 8
  • [9] SHARP BOUNDS FOR THE TSALLIS RELATIVE OPERATOR ENTROPY
    Nikoufar, Ismail
    Arpatapeh, Mehdi Kanani
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (04) : 1461 - 1471
  • [10] A NOTE ON INEQUALITIES FOR TSALLIS RELATIVE OPERATOR ENTROPY
    Zou, L.
    Jiang, Y.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (04): : 855 - 859