Vector valued multiplier spaces of fλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_\lambda $$\end{document}-summability, completeness through c0(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0(X)$$\end{document}-multiplier convergence and continuity and compactness of summing operators

被引:0
|
作者
Mahmut Karakuş
Feyzi Başar
机构
[1] Van Yüzüncü Yıl University,Faculty of Science, Department of Mathematics
[2] İnönü University,Department of Primary Mathematics Teacher Education
[3] Kısıklı Mah. Alim Sok. Alim,undefined
关键词
Almost summability; - and ; -multiplier convergent series; Completeness; 46B15; 46B20; 46B45; 40H05;
D O I
10.1007/s13398-020-00898-0
中图分类号
学科分类号
摘要
Quite recently, the authors introduced the vector valued multiplier spaces associated to the series of bounded linear operators Mf∞(∑kTk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^\infty _{f}\big (\sum _k T_k\big )$$\end{document} and Mwf∞(∑kTk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^\infty _{wf}\big (\sum _kT_k\big )$$\end{document} by means of almost and weak almost summability, respectively; [J. Math. Anal. Appl. 484: 123651]. As was recorded as an open problem in [J. Math. Anal. Appl. 484: 123651], in this study, we introduce vector valued multiplier spaces Mfλ∞(∑kTk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^\infty _{f_\lambda }\big (\sum _k T_k\big )$$\end{document} and Mwfλ∞(∑kTk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^\infty _{wf_\lambda }\big (\sum _k T_k\big )$$\end{document} by means of generalized almost and weak almost summability, and give a characterization of completeness of these spaces, via c0(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0(X)$$\end{document}-multiplier convergent series. We also characterize the continuity and the (weak) compactness of the summing operator S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document} from the multiplier spaces Mfλ∞(∑kTk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^\infty _{f_\lambda }\big (\sum _k T_k\big )$$\end{document} or Mwfλ∞(∑kTk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^\infty _{wf_\lambda }\big (\sum _k T_k\big )$$\end{document} to an arbitrary normed space Y through c0(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0(X)$$\end{document}-multiplier Cauchy and ℓ∞(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty (X)$$\end{document}-multiplier convergent series, respectively. Finally, we prove that if ∑kTk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _kT_k$$\end{document} is ℓ∞(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _\infty (X)$$\end{document}-multiplier Cauchy, then the spaces Mfλ∞(∑kTk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^\infty _{f_\lambda }\big (\sum _k T_k\big )$$\end{document} and Mwfλ∞(∑kTk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^\infty _{wf_\lambda }\big (\sum _k T_k\big )$$\end{document} are identical. These results are more general than the corresponding consequences given in [J. Math. Anal. Appl. 484: 123651] since almost convergence can be obtained from fλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_\lambda $$\end{document}-convergence under certain conditions.
引用
收藏
相关论文
共 50 条