On the global well-posedness of a class of Boussinesq–Navier–Stokes systems

被引:4
|
作者
Changxing Miao
Liutang Xue
机构
[1] Institute of Applied Physics and Computational Mathematics,
[2] The Graduate School of China Academy of Engineering Physics,undefined
关键词
76D03; 76D05; 35B33; 35Q35; Boussinesq system; Regularization effect; Para-differential calculus; Global well-posedness;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the following 2D Boussinesq–Navier–Stokes systems \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\begin{array}{lll}\partial_t u + u \cdot \nabla u + \nabla p = - \nu |D|^\alpha u + \theta e_2\\ \quad\quad \partial_t \theta+u\cdot\nabla \theta = - \kappa|D|^\beta \theta \\ \quad\quad\quad\quad\quad{\rm div} u = 0\end{array}}$$\end{document}with ν > 0, κ > 0 and 0 < β < α < 1. When \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{6-\sqrt{6}}{4}({\doteq}0.888) < \alpha < 1, 1-\alpha < \beta \leq f(\alpha)}$$\end{document}, where f(α) < 1 is an explicit function as a technical bound, we prove the global well-posedness results for the rough initial data.
引用
收藏
页码:707 / 735
页数:28
相关论文
共 50 条
  • [1] On the global well-posedness of a class of Boussinesq-Navier-Stokes systems
    Miao, Changxing
    Xue, Liutang
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (06): : 707 - 735
  • [2] Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation
    Hmidi, Taoufik
    Keraani, Sahbi
    Rousset, Frederic
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (09) : 2147 - 2174
  • [3] Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data
    Hmidi, Taoufik
    Rousset, Frederic
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (05): : 1227 - 1246
  • [4] Global Well-posedness for 3D Generalized Navier-Stokes-Boussinesq Equations
    Jiu, Quan-sen
    Yu, Huan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (01): : 1 - 16
  • [5] Global well-posedness for 3D generalized Navier-Stokes-Boussinesq equations
    Quan-sen Jiu
    Huan Yu
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 1 - 16
  • [6] Global Well-posedness for 3D Generalized Navier-Stokes-Boussinesq Equations
    Quan-sen JIU
    Huan YU
    Acta Mathematicae Applicatae Sinica, 2016, 32 (01) : 1 - 16
  • [7] Global well-posedness of the Navier-Stokes-omega equations
    Fan, Jishan
    Zhou, Yong
    APPLIED MATHEMATICS LETTERS, 2011, 24 (11) : 1915 - 1918
  • [8] On the global well-posedness for Boussinesq system
    Abidi, H.
    Hmidi, T.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) : 199 - 220
  • [9] Global well-posedness for a class of 2D Boussinesq systems with fractional dissipation
    Yang, Wanrong
    Jiu, Quansen
    Wu, Eahong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (11) : 4188 - 4213
  • [10] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Jinlu Li
    Zhaoyang Yin
    Xiaoping Zhai
    Acta Mathematica Scientia, 2022, 42 : 2131 - 2148