The Hartree equation with a constant magnetic field: well-posedness theory

被引:0
|
作者
Xin Dong
机构
[1] University of Maryland,Department of Mathematics
来源
关键词
Hartree equation; Fourier-Wigner transform; Infinitely many Fermions; Pauli operator; Magnetic field;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Hartree equation for infinitely many electrons with a constant external magnetic field. For the system, we show a local well-posedness result when the initial data is the pertubation of a Fermi sea, which is a non-trace class stationary solution to the system. In this case, the one particle Hamiltonian is the Pauli operator, which possesses distinct properties from the Laplace operator, for example, it has a discrete spectrum and infinite-dimensional eigenspaces. The new ingredient is that we use the Fourier–Wigner transform and the asymptotic properties of associated Laguerre polynomials to derive a collapsing estimate, by which we establish the local well-posedness result.
引用
收藏
相关论文
共 50 条
  • [21] ON WELL-POSEDNESS FOR INHOMOGENEOUS HARTREE EQUATIONS IN THE CRITICAL CASE
    Kim, Seongyeon
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (07) : 2132 - 2145
  • [22] WELL-POSEDNESS FOR THE SUPERCRITICAL GKDV EQUATION
    Strunk, Nils
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) : 527 - 542
  • [23] On well-posedness for the Benjamin–Ono equation
    Nicolas Burq
    Fabrice Planchon
    Mathematische Annalen, 2008, 340 : 497 - 542
  • [24] Sharp well-posedness for the Benjamin equation
    Chen, W.
    Guo, Z.
    Xiao, J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6209 - 6230
  • [25] On the Gevrey well-posedness of the Kirchhoff equation
    Tokio Matsuyama
    Michael Ruzhansky
    Journal d'Analyse Mathématique, 2019, 137 : 449 - 468
  • [26] Well-posedness for a perturbation of the KdV equation
    X. Carvajal
    L. Esquivel
    Nonlinear Differential Equations and Applications NoDEA, 2019, 26
  • [27] On the well-posedness of the hyperelastic rod equation
    Hasan Inci
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 795 - 802
  • [28] On the well-posedness of Galbrun's equation
    Hagg, Linus
    Berggren, Martin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 150 : 112 - 133
  • [29] Well-Posedness of a Parabolic Equation with Involution
    Ashyralyev, Allaberen
    Sarsenbi, Abdizhahan
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (10) : 1295 - 1304
  • [30] LOCAL WELL-POSEDNESS FOR KAWAHARA EQUATION
    Kato, Takamori
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2011, 16 (3-4) : 257 - 287