Gromov's Centralizer Theorem

被引:0
|
作者
A. Candel
R. Quiroga-Barranco
机构
[1] CSUN,Department of Mathematics
[2] CINVESTAV-IPN,Departamento de Matemáticas
来源
Geometriae Dedicata | 2003年 / 100卷
关键词
simple Lie groups; finite type structures; analytic actions;
D O I
暂无
中图分类号
学科分类号
摘要
We study the properties of rigid geometric structures and their relation with those of finite type. The main result proves that for a noncompact simple Lie group G acting analytically on a manifold M preserving a finite volume and either a connection or a geometric structure of finite type there is a nontrivial space of globally defined Killing vector fields on the universal cover \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde M$$ \end{document} that centralize the action of G. Several appplications of this result are provided.
引用
收藏
页码:123 / 155
页数:32
相关论文
共 50 条
  • [1] Gromov's centralizer theorem
    Candel, A
    Quiroga-Barranco, R
    [J]. GEOMETRIAE DEDICATA, 2003, 100 (01) : 123 - 155
  • [2] The Gromov’s centralizer theorem for semisimple Lie group actions
    Rosales-Ortega J.
    [J]. Boletín de la Sociedad Matemática Mexicana, 2017, 23 (2) : 825 - 845
  • [3] Bergman's centralizer theorem and quantization
    Belov, Alexei Kanel
    Razavinia, Farrokh
    Zhang, Wenchao
    [J]. COMMUNICATIONS IN ALGEBRA, 2018, 46 (05) : 2123 - 2129
  • [4] A direct proof of Gromov's theorem
    Burago Y.D.
    Malev S.G.
    Novikov D.I.
    [J]. Journal of Mathematical Sciences, 2009, 161 (3) : 361 - 367
  • [5] ON GROMOV'S WAIST OF THE SPHERE THEOREM
    Memarian, Yashar
    [J]. JOURNAL OF TOPOLOGY AND ANALYSIS, 2011, 3 (01) : 7 - 36
  • [6] On certain quantifications of Gromov's nonsqueezing theorem
    Sackel, Kevin
    Song, Antoine
    Varolgunes, Umut
    Zhu, Jonathan J.
    Brendel, Joe
    [J]. GEOMETRY & TOPOLOGY, 2024, 28 (03) : 1113 - 1152
  • [7] An Analogue of Gromov’s Waist Theorem for Coloring the Cube
    R. N. Karasev
    [J]. Discrete & Computational Geometry, 2013, 49 : 444 - 453
  • [8] ON A THEOREM OF GROMOV AND MILMAN
    JANUSZKIEWICZ, T
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 94 (03) : 477 - 478
  • [9] A Finitary Version of Gromov’s Polynomial Growth Theorem
    Yehuda Shalom
    Terence Tao
    [J]. Geometric and Functional Analysis, 2010, 20 : 1502 - 1547
  • [10] An Analogue of Gromov's Waist Theorem for Coloring the Cube
    Karasev, R. N.
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 49 (03) : 444 - 453