Gromov's centralizer theorem

被引:23
|
作者
Candel, A [1 ]
Quiroga-Barranco, R
机构
[1] Calif State Univ Northridge, Dept Math, Northridge, CA 91330 USA
[2] CINVESTAV, IPN, Dept Matemat, Mexico City 07300, DF, Mexico
关键词
simple Lie groups; finite type structures; analytic actions;
D O I
10.1023/A:1025892501271
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the properties of rigid geometric structures and their relation with those of finite type. The main result proves that for a noncompact simple Lie group G acting analytically on a manifold M preserving a finite volume and either a connection or a geometric structure of finite type there is a nontrivial space of globally defined Killing vector fields on the universal cover (M) over tilde that centralize the action of G. Several appplications of this result are provided.
引用
下载
收藏
页码:123 / 155
页数:33
相关论文
共 50 条
  • [1] Gromov's Centralizer Theorem
    A. Candel
    R. Quiroga-Barranco
    Geometriae Dedicata, 2003, 100 : 123 - 155
  • [2] The Gromov’s centralizer theorem for semisimple Lie group actions
    Rosales-Ortega J.
    Boletín de la Sociedad Matemática Mexicana, 2017, 23 (2) : 825 - 845
  • [3] Bergman's centralizer theorem and quantization
    Belov, Alexei Kanel
    Razavinia, Farrokh
    Zhang, Wenchao
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (05) : 2123 - 2129
  • [4] A direct proof of Gromov's theorem
    Burago Y.D.
    Malev S.G.
    Novikov D.I.
    Journal of Mathematical Sciences, 2009, 161 (3) : 361 - 367
  • [5] ON GROMOV'S WAIST OF THE SPHERE THEOREM
    Memarian, Yashar
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2011, 3 (01) : 7 - 36
  • [6] On certain quantifications of Gromov's nonsqueezing theorem
    Sackel, Kevin
    Song, Antoine
    Varolgunes, Umut
    Zhu, Jonathan J.
    Brendel, Joe
    GEOMETRY & TOPOLOGY, 2024, 28 (03) : 1113 - 1152
  • [7] An Analogue of Gromov’s Waist Theorem for Coloring the Cube
    R. N. Karasev
    Discrete & Computational Geometry, 2013, 49 : 444 - 453
  • [8] ON A THEOREM OF GROMOV AND MILMAN
    JANUSZKIEWICZ, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 94 (03) : 477 - 478
  • [9] An Analogue of Gromov's Waist Theorem for Coloring the Cube
    Karasev, R. N.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 49 (03) : 444 - 453
  • [10] A Finitary Version of Gromov’s Polynomial Growth Theorem
    Yehuda Shalom
    Terence Tao
    Geometric and Functional Analysis, 2010, 20 : 1502 - 1547