Convergence of free boundaries in discrete obstacle problems

被引:0
|
作者
Yongmin Zhang
机构
[1] State University of New York at Stony Brook,Department of Applied Mathematics and Statistics
来源
Numerische Mathematik | 2007年 / 106卷
关键词
Variational Inequality; Free Boundary; Continuous Solution; Obstacle Problem; Discrete Solution;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a piecewise linear finite element approximation of the obstacle problem gives an approximate free boundary converges, in an appropriate distance, to the free boundary of the continuous problem under a stability condition on the obstacle.
引用
收藏
页码:157 / 164
页数:7
相关论文
共 50 条
  • [21] C2,a regularity of free boundaries in parabolic non-local obstacle problems
    Kukuljan, Teo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (02)
  • [22] NONLINEAR DIFFUSION PROBLEMS WITH FREE BOUNDARIES: CONVERGENCE, TRANSITION SPEED, AND ZERO NUMBER ARGUMENTS
    Du, Yihong
    Lou, Bendong
    Zhou, Maolin
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (05) : 3555 - 3584
  • [23] DISCRETE CONVERGENCE AND RAPIDITY OF CONVERGENCE IN SINGULAR PERTURBATION PROBLEMS
    HUET, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (23): : 1035 - 1037
  • [24] Generic regularity of free boundaries for the thin obstacle problem
    Fernandez-Real, Xavier
    Torres-Latorre, Clara
    ADVANCES IN MATHEMATICS, 2023, 433
  • [25] Monotone convergence of finite element approximations of obstacle problems
    Zhang, Yongmin
    APPLIED MATHEMATICS LETTERS, 2007, 20 (04) : 445 - 449
  • [26] Free boundaries in problems with hysteresis
    Apushkinskaya, D. E.
    Uraltseva, N. N.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2050):
  • [27] OPTIMIZATION PROBLEMS WITH FREE BOUNDARIES
    KERIMOV, AK
    DOKLADY AKADEMII NAUK SSSR, 1982, 266 (03): : 545 - 548
  • [28] Porosity of free boundaries in the obstacle problem for quasilinear elliptic equations
    JUN ZHENG
    ZHIHUA ZHANG
    PEIHAO ZHAO
    Proceedings - Mathematical Sciences, 2013, 123 : 373 - 382
  • [29] Properties of the free boundaries for the obstacle problem of the porous medium equations
    Kim, Sunghoon
    Lee, Ki-Ahm
    Park, Jinwan
    ADVANCES IN CALCULUS OF VARIATIONS, 2024, 17 (01) : 209 - 235
  • [30] Porosity of free boundaries in the obstacle problem for quasilinear elliptic equations
    Zheng, Jun
    Zhang, Zhihua
    Zhao, Peihao
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (03): : 373 - 382