Supercritical Zakharov–Kuznetsov equation posed on bounded rectangles

被引:0
|
作者
M. Castelli
G. Doronin
机构
[1] Universidade Estadual de Maringá,Departamento de Matemática
关键词
gZK equation; Well-posedness; Exponential decay; 35M20; 35Q72;
D O I
暂无
中图分类号
学科分类号
摘要
An initial boundary value problem for the 2D generalized Zakharov–Kuznetsov equation posed on a bounded rectangle is considered. Supercritical (higher than two) integer powers in nonlinearity have been studied. Results on the existence, uniqueness and exponential decay of solutions are presented.
引用
收藏
相关论文
共 50 条
  • [41] Lump interactions and collapse in the modified Zakharov-Kuznetsov equation
    Sipcic, R
    Benney, DJ
    STUDIES IN APPLIED MATHEMATICS, 2000, 105 (04) : 385 - 403
  • [42] ON SPECIAL REGULARITY PROPERTIES OF SOLUTIONS OF THE ZAKHAROV-KUZNETSOV EQUATION
    Linares, Felipe
    Ponce, Gustavo
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2018, 17 (04) : 1561 - 1572
  • [43] Travelling wave solutions for modified Zakharov-Kuznetsov equation
    Zhao, Xiaoshan
    Zhou, Hongxian
    Tang, Yaning
    Jia, Huabing
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (01) : 634 - 648
  • [44] CYLINDRICAL QUASI-SOLITONS OF THE ZAKHAROV-KUZNETSOV EQUATION
    IWASAKI, H
    TOH, S
    KAWAHARA, T
    PHYSICA D, 1990, 43 (2-3): : 293 - 303
  • [45] Dynamics of waves and multidimensional solitons of the Zakharov-Kuznetsov equation
    Infeld, E
    Skorupski, AA
    Senatorski, A
    JOURNAL OF PLASMA PHYSICS, 2000, 64 : 397 - 409
  • [46] An efficient iterative method for solving Zakharov-Kuznetsov Equation
    Saravi, Masoud
    Nikkar, Ali
    XXIST INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS21), 2013, 474
  • [47] A note on the unique continuation property for Zakharov-Kuznetsov equation
    Panthee, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (03) : 425 - 438
  • [48] Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications
    Molinet, Luc
    Pilod, Didier
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (02): : 347 - 371
  • [49] Multi-Symplectic Method for the Zakharov-Kuznetsov Equation
    Li, Haochen
    Sun, Jianqiang
    Qin, Mengzhao
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2015, 7 (01) : 58 - 73
  • [50] Application of Homotopy perturbation method to the Zakharov-Kuznetsov equation
    Barari, A.
    Janalizadeh, A.
    Ganji, D. D.
    Zolfaghari, H.
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96