Anti-forcing spectra of perfect matchings of graphs

被引:0
|
作者
Kai Deng
Heping Zhang
机构
[1] Lanzhou University,School of Mathematics and Statistics
[2] Beifang University of Nationalities,School of Mathematics and Information Science
来源
关键词
Perfect matching; Anti-forcing number; Anti-forcing spectrum; Hexagonal system;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a perfect matching of a graph G. The smallest number of edges whose removal to make M as the unique perfect matching in the resulting subgraph is called the anti-forcing number of M. The anti-forcing spectrum of G is the set of anti-forcing numbers of all perfect matchings in G, denoted by Specaf(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Spec}_{af}(G)$$\end{document}. In this paper, we show that any finite set of positive integers can be the anti-forcing spectrum of a graph. We present two classes of hexagonal systems whose anti-forcing spectra are integer intervals. Finally, we show that determining the anti-forcing number of a perfect matching of a bipartite graph with maximum degree four is a NP-complete problem.
引用
收藏
页码:660 / 680
页数:20
相关论文
共 50 条
  • [41] Single coronoid systems with an anti-forcing edge
    Liang, Xiaodong
    Zhang, Heping
    [J]. DISCRETE APPLIED MATHEMATICS, 2017, 233 : 94 - 103
  • [42] On the index of tricyclic graphs with perfect matchings
    Geng, Xianya
    Li, Shuchao
    Li, Xuechao
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (12) : 2304 - 2316
  • [43] Random perfect matchings in regular graphs
    Granet, Bertille
    Joos, Felix
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2024, 64 (01) : 3 - 14
  • [44] Perfect matchings in regular bipartite graphs
    Katerinis, P
    Tsikopoulos, N
    [J]. GRAPHS AND COMBINATORICS, 1996, 12 (04) : 327 - 331
  • [45] Perfect matchings in random intersection graphs
    Mindaugas Bloznelis
    Tomasz Łuczak
    [J]. Acta Mathematica Hungarica, 2013, 138 : 15 - 33
  • [46] On perfect matchings in matching covered graphs
    He, Jinghua
    Wei, Erling
    Ye, Dong
    Zhai, Shaohui
    [J]. JOURNAL OF GRAPH THEORY, 2019, 90 (04) : 535 - 546
  • [47] On the Perfect Matchings of Near Regular Graphs
    Hou, Xinmin
    [J]. GRAPHS AND COMBINATORICS, 2011, 27 (06) : 865 - 869
  • [48] Perfect matchings in planar cubic graphs
    Maria Chudnovsky
    Paul Seymour
    [J]. Combinatorica, 2012, 32 : 403 - 424
  • [49] On perfect matchings of complements of line graphs
    Liu, Xiaoping
    An, Xinhui
    Wu, Baoyindureng
    [J]. ARS COMBINATORIA, 2009, 90 : 45 - 54
  • [50] On the index of bicyclic graphs with perfect matchings
    Chang, A
    Tian, F
    Yu, AM
    [J]. DISCRETE MATHEMATICS, 2004, 283 (1-3) : 51 - 59