Pathologist-level interpretable whole-slide cancer diagnosis with deep learning

被引:1
|
作者
Zizhao Zhang
Pingjun Chen
Mason McGough
Fuyong Xing
Chunbao Wang
Marilyn Bui
Yuanpu Xie
Manish Sapkota
Lei Cui
Jasreman Dhillon
Nazeel Ahmad
Farah K. Khalil
Shohreh I. Dickinson
Xiaoshuang Shi
Fujun Liu
Hai Su
Jinzheng Cai
Lin Yang
机构
[1] University of Florida,Department of Computer Information Science Engineering
[2] University of Florida,J. Crayton Pruitt Family Department of Biomedical Engineering
[3] University of Colorado Anschutz Medical Campus,Department of Biostatistics and Informatics
[4] The First Affiliated Hospital of Xi’an Jiaotong University,Department of Pathology
[5] H. Lee Moffitt Cancer Center and Research Institute,Department of Electrical and Computer Engineering
[6] University of Florida,undefined
[7] James A. Haley Veterans’ Hospital,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Diagnostic pathology is the foundation and gold standard for identifying carcinomas. However, high inter-observer variability substantially affects productivity in routine pathology and is especially ubiquitous in diagnostician-deficient medical centres. Despite rapid growth in computer-aided diagnosis (CAD), the application of whole-slide pathology diagnosis remains impractical. Here, we present a novel pathology whole-slide diagnosis method, powered by artificial intelligence, to address the lack of interpretable diagnosis. The proposed method masters the ability to automate the human-like diagnostic reasoning process and translate gigapixels directly to a series of interpretable predictions, providing second opinions and thereby encouraging consensus in clinics. Moreover, using 913 collected examples of whole-slide data representing patients with bladder cancer, we show that our method matches the performance of 17 pathologists in the diagnosis of urothelial carcinoma. We believe that our method provides an innovative and reliable means for making diagnostic suggestions and can be deployed at low cost as next-generation, artificial intelligence-enhanced CAD technology for use in diagnostic pathology.
引用
收藏
页码:236 / 245
页数:9
相关论文
共 50 条
  • [1] Pathologist-level interpretable whole-slide cancer diagnosis with deep learning
    Zhang, Zizhao
    Chen, Pingjun
    McGough, Mason
    Xing, Fuyong
    Wang, Chunbao
    Bui, Marilyn
    Xie, Yuanpu
    Sapkota, Manish
    Cui, Lei
    Dhillon, Jasreman
    Ahmad, Nazeel
    Khalil, Farah K.
    Dickinson, Shohreh I.
    Shi, Xiaoshuang
    Liu, Fujun
    Su, Hai
    Cai, Jinzheng
    Yang, Lin
    NATURE MACHINE INTELLIGENCE, 2019, 1 (05) : 236 - +
  • [2] Publisher Correction: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning
    Zizhao Zhang
    Pingjun Chen
    Mason McGough
    Fuyong Xing
    Chunbao Wang
    Marilyn Bui
    Yuanpu Xie
    Manish Sapkota
    Lei Cui
    Jasreman Dhillon
    Nazeel Ahmad
    Farah K. Khalil
    Shohreh I. Dickinson
    Xiaoshuang Shi
    Fujun Liu
    Hai Su
    Jinzheng Cai
    Lin Yang
    Nature Machine Intelligence, 2019, 1 : 384 - 384
  • [3] Publisher Correction: Pathologist-level interpretable whole-slide cancer diagnosis with deep learning
    Zizhao Zhang
    Pingjun Chen
    Mason McGough
    Fuyong Xing
    Chunbao Wang
    Marilyn Bui
    Yuanpu Xie
    Manish Sapkota
    Lei Cui
    Jasreman Dhillon
    Nazeel Ahmad
    Farah K. Khalil
    Shohreh I. Dickinson
    Xiaoshuang Shi
    Fujun Liu
    Hai Su
    Jinzheng Cai
    Lin Yang
    Nature Machine Intelligence, 2019, 1 : 289 - 289
  • [4] Pathologist-level interpretable whole-slide cancer diagnosis with deep learning (vol 1, 236, 2019)
    Zhang, Zizhao
    Chen, Pingjun
    McGough, Mason
    Xing, Fuyong
    Wang, Chunbao
    Bui, Marilyn
    Xie, Yuanpu
    Sapkota, Manish
    Cui, Lei
    Dhillon, Jasreman
    Ahmad, Nazeel
    Khalil, Farah K.
    Dickinson, Shohreh I.
    Shi, Xiaoshuang
    Liu, Fujun
    Su, Hai
    Cai, Jinzheng
    Yang, Lin
    NATURE MACHINE INTELLIGENCE, 2019, 1 (06) : 289 - 289
  • [5] Pathologist-level interpretable whole-slide cancer diagnosis with deep learning (vol 1, pg 236, 2019)
    Zhang, Zizhao
    Chen, Pingjun
    McGough, Mason
    Xing, Fuyong
    Wang, Chunbao
    Bui, Marilyn
    Xie, Yuanpu
    Sapkota, Manish
    Cui, Lei
    Dhillon, Jasreman
    Ahmad, Nazeel
    Khalil, Farah K.
    Dickinson, Shohreh I.
    Shi, Xiaoshuang
    Liu, Fujun
    Su, Hai
    Cai, Jinzheng
    Yang, Lin
    NATURE MACHINE INTELLIGENCE, 2019, 1 (08) : 384 - 384
  • [6] DeepBatch: A hybrid deep learning model for interpretable diagnosis of breast cancer in whole-slide images
    Zeiser, Felipe Andre
    da Costa, Cristiano Andre
    Ramos, Gabriel de Oliveira
    Bohn, Henrique C.
    Santos, Ismael
    Roehe, Adriana Vial
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [7] Deep Learning Assisted Diagnosis of Onychomycosis on Whole-Slide Images
    Jansen, Philipp
    Creosteanu, Adelaida
    Matyas, Viktor
    Dilling, Amrei
    Pina, Ana
    Saggini, Andrea
    Schimming, Tobias
    Landsberg, Jennifer
    Burgdorf, Birte
    Giaquinta, Sylvia
    Mueller, Hansgeorg
    Emberger, Michael
    Rose, Christian
    Schmitz, Lutz
    Geraud, Cyrill
    Schadendorf, Dirk
    Schaller, Joerg
    Alber, Maximilian
    Klauschen, Frederick
    Griewank, Klaus G.
    JOURNAL OF FUNGI, 2022, 8 (09)
  • [8] Expert-level diagnosis of nasal polyps using deep learning on whole-slide imaging
    Wu, Qingwu
    Chen, Jianning
    Deng, Huiyi
    Ren, Yong
    Sun, Yueqi
    Wang, Weihao
    Yuan, Lianxiong
    Hong, Haiyu
    Zheng, Rui
    Kong, Weifeng
    Huang, Xuekun
    Huang, Guifang
    Wang, Lunji
    Zhang, Yana
    Han, Lanqing
    Yang, Qintai
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2020, 145 (02) : 698 - +
  • [9] Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning
    Syrykh, Charlotte
    Abreu, Arnaud
    Amara, Nadia
    Siegfried, Aurore
    Maisongrosse, Veronique
    Frenois, Francois X.
    Martin, Laurent
    Rossi, Cedric
    Laurent, Camille
    Brousset, Pierre
    NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [10] Deep learning model shows pathologist-level detection of sentinel node metastasis of melanoma and intra-nodal nevi on whole slide images
    Siarov, Jan
    Siarov, Angelica
    Kumar, Darshan
    Paoli, John
    Molne, Johan
    Neittaanmaki, Noora
    FRONTIERS IN MEDICINE, 2024, 11