A note on the convolution theorem for the Fourier transform

被引:0
|
作者
Charles S. Kahane
机构
[1] Vanderbilt University,Department of Mathematics
来源
关键词
convolution; Fourier transform; 42A38; 39B22;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we characterize those bounded linear transformations Tf carrying L1(ℝ1) into the space of bounded continuous functions on ℝ1, for which the convolution identity T(f * g) = Tf · Tg holds. It is shown that such a transformation is just the Fourier transform combined with an appropriate change of variable.
引用
收藏
页码:199 / 207
页数:8
相关论文
共 50 条
  • [21] Fractional quaternion Fourier transform, convolution and correlation
    Xu Guanlei
    Wang Xiaotong
    Xu Xiaogang
    [J]. SIGNAL PROCESSING, 2008, 88 (10) : 2511 - 2517
  • [22] CONVOLUTION THEOREMS FOR CLIFFORD FOURIER TRANSFORM AND PROPERTIES
    Bahri, Mawardi
    Ashino, Ryuichi
    Vaillancourt, Remi
    [J]. JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2014, 20 (02) : 125 - 140
  • [23] Characterisation of Shah convolution Fourier transform detection
    Kwok, YC
    Manz, A
    [J]. ANALYST, 2001, 126 (10) : 1640 - 1644
  • [24] A generalized Fourier transform and convolution on time scales
    Marks, Robert J., II
    Gravagne, Ian A.
    Davis, John M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) : 901 - 919
  • [25] CONVOLUTION, PRODUCT AND FOURIER-TRANSFORM OF DISTRIBUTIONS
    KAMINSKI, A
    [J]. STUDIA MATHEMATICA, 1982, 74 (01) : 83 - 96
  • [26] Product and convolution theorems for the fractional Fourier transform
    Almeida, LB
    [J]. IEEE SIGNAL PROCESSING LETTERS, 1997, 4 (01) : 15 - 17
  • [27] The octonionic Fourier transform: Uncertainty relations and convolution
    Lian, Pan
    [J]. SIGNAL PROCESSING, 2019, 164 : 295 - 300
  • [28] CONVOLUTION AND FOURIER-TRANSFORM OF HIDA DISTRIBUTIONS
    KUO, HH
    [J]. LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1992, 176 : 165 - 176
  • [29] A Convolution and Product Theorem for the Linear Canonical Transform
    Wei, Deyun
    Ran, Qiwen
    Li, Yuanmin
    Ma, Jing
    Tan, Liying
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (10) : 853 - 856
  • [30] Convolution theorem for the windowed linear canonical transform
    Gao, Wen-Biao
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024,