On Algebras of Three-Dimensional Quaternion Harmonic Fields

被引:0
|
作者
Belishev M.I. [1 ]
机构
[1] St. Petersburg State University, St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1007/s10958-017-3559-1
中图分类号
学科分类号
摘要
A quaternion field is a pair p = {α, u} of a function α and a vector field u given on a 3d Riemannian manifold Ω with boundary. A field is said to be harmonic if ∇α = rot u in Ω. The linear space of harmonic fields is not an algebra with respect to quaternion multiplication. However, it may contain commutative algebras, which is the subject of the paper. Possible applications of these algebras to the impedance tomography problem are touched upon. © 2017, Springer Science+Business Media, LLC.
引用
下载
收藏
页码:701 / 710
页数:9
相关论文
共 50 条
  • [41] Analytical dual quaternion algorithm of the weighted three-dimensional coordinate transformation
    Zeng, Huaien
    Wang, Junjie
    Wang, Zhihao
    Li, Siyang
    He, Haiqing
    Chang, Guobin
    Yang, Ronghua
    EARTH PLANETS AND SPACE, 2022, 74 (01):
  • [42] Three-dimensional quadratic algebras: some realizations and representations
    Kumar, VS
    Bambah, BA
    Jagannathan, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (41): : 8583 - 8596
  • [43] Algebras of Toeplitz Operator on the Three-Dimensional Siegel Domain
    Sanchez-Nungaray, Armando
    Vasilevski, Nikolai
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2018, 90 (04)
  • [44] Canonical involutions in three-dimensional generalised Lie algebras
    Sigurdsson, G
    Silvestrov, SD
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2000, 50 (01) : 181 - 186
  • [45] Three-dimensional associative non-commutative algebras
    Pickert, G
    JOURNAL OF ALGEBRA, 2000, 234 (02) : 280 - 290
  • [46] Algebras of Toeplitz Operator on the Three-Dimensional Siegel Domain
    Armando Sánchez-Nungaray
    Nikolai Vasilevski
    Integral Equations and Operator Theory, 2018, 90
  • [47] Poisson geometry of PI three-dimensional Sklyanin algebras
    Walton, Chelsea
    Wang, Xingting
    Yakimov, Milen
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 118 (06) : 1471 - 1500
  • [48] Three-Dimensional Metric Lie Algebras and Ricci Flow
    May, Robert D.
    Wears, Thomas H.
    JOURNAL OF LIE THEORY, 2020, 30 (03) : 811 - 836
  • [49] Strong contraction of the representations of the three-dimensional Lie algebras
    Subag, E. M.
    Baruch, E. M.
    Birman, J. L.
    Mann, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (26)
  • [50] Classification in chains of three-dimensional real evolution algebras
    Narkuziyev, B. A.
    Rozikov, U. A.
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (02): : 265 - 300