On Algebras of Three-Dimensional Quaternion Harmonic Fields

被引:0
|
作者
Belishev M.I. [1 ]
机构
[1] St. Petersburg State University, St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1007/s10958-017-3559-1
中图分类号
学科分类号
摘要
A quaternion field is a pair p = {α, u} of a function α and a vector field u given on a 3d Riemannian manifold Ω with boundary. A field is said to be harmonic if ∇α = rot u in Ω. The linear space of harmonic fields is not an algebra with respect to quaternion multiplication. However, it may contain commutative algebras, which is the subject of the paper. Possible applications of these algebras to the impedance tomography problem are touched upon. © 2017, Springer Science+Business Media, LLC.
引用
下载
收藏
页码:701 / 710
页数:9
相关论文
共 50 条
  • [1] ON ALGEBRAS OF HARMONIC QUATERNION FIELDS IN R3
    Belishev, M., I
    Vakulenko, A. F.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2020, 31 (01) : 1 - 12
  • [2] Division algebras three-dimensional over algebraic number fields
    Wene, GP
    MOSTLY FINITE GEOMETRIES: IN CELEBRATION OF T G OSTROM'S 80TH BIRTHDAY, 1997, 190 : 413 - 420
  • [3] AN ALGORITHM FOR A CLASSIFICATION OF THREE-DIMENSIONAL LEIBNIZ ALGEBRAS OVER ARBITRARY FIELDS
    Rakhimov, I. S.
    Rikhsiboev, I. M.
    Mohammed, M. A.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2018, 40 (02): : 181 - 198
  • [4] Quantum counterparts of three-dimensional real Lie algebras over harmonic oscillator
    Paal, Eugen
    Virkepu, Jueri
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2010, 8 (03): : 289 - 295
  • [5] QUATERNION SMOOTHING ON THREE-DIMENSIONAL KINEMATICS DATA
    Vrongistinos, K.
    Wang, Y. T.
    Hwang, Y.
    Pascoe, D. D.
    Marghitu, D.
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2001, 33 (05): : S84 - S84
  • [6] Dynamical deformations of three-dimensional Lie algebras in Bianchi classification over the harmonic oscillator
    Paal, Eugen
    Virkepu, Jueri
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (05)
  • [7] One-harmonic invariant vector fields on three-dimensional Lie groups
    Calvino-Louzao, E.
    Seoane-Bascoy, J.
    Vazquez-Abal, M. E.
    Vazquez-Lorenzo, R.
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (06) : 1532 - 1547
  • [8] Minimal and harmonic characteristic vector fields on three-dimensional contact metric manifolds
    González-Dávila J.C.
    Vanhecke L.
    Journal of Geometry, 2001, 72 (1) : 65 - 76
  • [9] Classification of three-dimensional evolution algebras
    Cabrera Casado, Yolanda
    Siles Molina, Mercedes
    Victoria Velasco, M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 524 : 68 - 108
  • [10] CLASSIFICATION OF THREE-DIMENSIONAL ZEROPOTENT ALGEBRAS
    Cedilnik, Anton
    Jerman, Marjan
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2020, 27 : 127 - 146