A current mode instrumentation amplifier based on the flipped voltage follower in 0.50 µm CMOS

被引:0
|
作者
Gregorio Zamora-Mejía
Jaime Martínez-Castillo
José Miguel Rocha-Pérez
Alejandro Díaz-Sánchez
机构
[1] Universidad Veracruzana,
[2] Instituto Nacional de Astrofísica,undefined
[3] Óptica y Electrónica,undefined
关键词
Biopotential; Current mode instrumentation amplifier CMIA; Flipped voltage follower FVF; Common mode rejection ratio CMRR; Gain-bandwidth product GBW;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents the design of a current mode instrumentation amplifier (CMIA) based on the flipped voltage follower (FVF), used as a double current sense mechanism. Unlike current state of the art, the proposed CMIA senses the sourced and sank current of the voltage follower buffer inside the Op-Amp inputs. The FVF low-impedance input node allows to monitor the sink current provided by the low-impedance drain node of the active load in the voltage follower buffer. Proposed CMIA uses Split-Length compensated op-amps at the inputs, and Nulling-Resistor compensation technique is used at the output Op-Amp. The proposed CMIA is able to provide continuous programmable gains from 16 to 56 dB by adjusting R2/R1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_2/R_1$$\end{document} resistor ratios from 6.3 to 630 respectively. A gain-bandwidth product of 1.23 MHz and a common mode rejection ratio (CMRR) of 96 dB is obtained. A −3 dB CMRR cutoff frequency of 115 Hz is observed in all gain cases. An overall CMIA power consumption of 315.5 µW is measured; 95 µA at ±1.65 V. The proposed CMIA was simulated and fabricated using 0.50 µm ON-Semiconductor CMOS standard technology.
引用
收藏
页码:389 / 398
页数:9
相关论文
共 50 条
  • [21] Class AB Voltage Follower and Low-Voltage Current Mirror with Very High Figures of Merit Based on the Flipped Voltage Follower
    Ramirez-Angulo, Jaime
    Paul, Anindita
    Gangineni, Manaswini
    Hinojo-Montero, Jose Maria
    Huerta-Chua, Jesus
    JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS, 2023, 13 (02)
  • [22] An improved current mode instrumentation amplifier
    Galanis, C
    Haritantis, I
    ICECS 96 - PROCEEDINGS OF THE THIRD IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS, AND SYSTEMS, VOLS 1 AND 2, 1996, : 65 - 68
  • [23] Cascadable current mode instrumentation amplifier
    Agrawal, Deepak
    Maheshwari, Sudhanshu
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2018, 94 : 91 - 101
  • [24] Current mode instrumentation amplifier with CDCCC
    Rupam Das
    Sajal K. Paul
    Analog Integrated Circuits and Signal Processing, 2021, 108 : 455 - 468
  • [25] Current mode instrumentation amplifier with CDCCC
    Das, Rupam
    Paul, Sajal K.
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2021, 108 (02) : 455 - 468
  • [26] The flipped voltage follower-based low voltage fully differential CMOS sample-and-hold circuit
    Fayomi, Christian Jesus B.
    Ramirez-Angulo, Jamine
    Wirth, Gilson I.
    Matsuzawa, Akira
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 1716 - +
  • [27] Voltage-mode multifunction filter using one current feedback amplifier and one voltage follower
    Horng, JW
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2001, 88 (02) : 153 - 157
  • [28] VARIOUS CURRENT-MODE AND VOLTAGE-MODE INSTRUMENTATION AMPLIFIER TOPOLOGIES SUITABLE FOR INTEGRATION
    Yuce, Erkan
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2010, 19 (03) : 689 - 699
  • [29] Voltage- and current-controlled high CMRR instrumentation amplifier using CMOS current conveyors
    Ercan, Hamdi
    Tekin, Sezai Alper
    Alci, Mustafa
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2012, 20 (04) : 547 - 556
  • [30] Low-Voltage Flipped Voltage Follower Cell Based Current Mirrors for High Frequency Applications
    Abhishek Shrivastava
    Rishikesh Pandey
    Caffey Jindal
    Wireless Personal Communications, 2020, 111 : 143 - 161