Characteristic Properties of Almost Hermitian Structures on Homogeneous Reductive Spaces

被引:0
|
作者
O. V. Dashevich
机构
[1] Belarusian State University,
来源
Mathematical Notes | 2003年 / 73卷
关键词
homogeneous reductive almost Hermitian space; Kähler-type structures; regular Φ-space; -structure; Nomizu function;
D O I
暂无
中图分类号
学科分类号
摘要
Homogeneous reductive almost Hermitian spaces are considered. For such spaces satisfying a certain simple algebraic condition, criteria providing simple descriptions of Kähler, nearly Kähler, almost Kähler, quasi-Kähler, and G1 structures are obtained. It is found that, under this condition, Kähler structures can occur only on locally symmetric spaces and nearly Kähler structures, on naturally reductive spaces. Almost Kähler, quasi-Kähler, and G1 structures are described by simple conditions imposed on the Nomizu function α of the Riemannian connection of a homogeneous reductive almost Hermitian space.
引用
收藏
页码:636 / 642
页数:6
相关论文
共 50 条
  • [31] Characteristic cycles in Hermitian symmetric spaces
    Boe, BD
    Fu, JHG
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (03): : 417 - 467
  • [32] Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact 3-structure
    Cabrera, FM
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1998, 48 (03) : 545 - 563
  • [33] Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact 3-structure
    Francisco Martín Cabrera
    Czechoslovak Mathematical Journal, 1998, 48 : 545 - 563
  • [34] Some Critical Almost Hermitian Structures
    Lee, Jungchan
    Park, JeongHyeong
    Sekigawa, Kouei
    RESULTS IN MATHEMATICS, 2013, 63 (1-2) : 31 - 45
  • [35] Almost hermitian structures with parallel torsion
    Schoemann, Nils
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (11) : 2187 - 2212
  • [36] NOTES ON CRITICAL ALMOST HERMITIAN STRUCTURES
    Lee, Jung Chan
    Park, Jeong Hyeong
    Sekigawa, Kouei
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (01) : 167 - 178
  • [37] Almost Hermitian structures and quaternionic geometries
    Cabrera, FM
    Swann, A
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2004, 21 (02) : 199 - 214
  • [38] Some Critical Almost Hermitian Structures
    Jungchan Lee
    JeongHyeong Park
    Kouei Sekigawa
    Results in Mathematics, 2013, 63 : 31 - 45
  • [39] On generalized almost para-Hermitian spaces
    Petrovic, Milos Z.
    FILOMAT, 2023, 37 (25) : 8719 - 8724
  • [40] Quasi-Statistical Manifolds with Almost Hermitian and Almost Anti-Hermitian Structures
    Aktas, Busra
    Gezer, Aydin
    Durmaz, Olgun
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2025, 33 (01): : 5 - 32