On Tangent Cones of Schubert Varieties

被引:0
|
作者
Fuchs D. [1 ]
Kirillov A. [2 ]
Morier-Genoud S. [3 ]
Ovsienko V. [4 ]
机构
[1] University of California Davis, Mathematical Sciences Building One Shields Ave., Davis, 95616, CA
[2] Department of Mathematics, University of Pennsylvania, 209 South 33rd Street, Philadelphia, 19104-6395, PA
[3] Sorbonne Universités, UPMC Univ Paris 06, Institut de Mathématiques de Jussieu-Paris Rive Gauche, UMR 7586, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, Paris
[4] CNRS, Laboratoire de Mathématiques U.F.R. Sciences Exactes et Naturelles Moulin de la Housse, BP 1039, Reims Cedex 2
关键词
Essential set; Rank matrix; Schubert variety; Singularity; Tangent cone;
D O I
10.1007/s40598-017-0074-x
中图分类号
学科分类号
摘要
We consider tangent cones of Schubert varieties in the complete flag variety, and investigate the problem when the tangent cones of two different Schubert varieties coincide. We give a sufficient condition for such coincidence, and formulate a conjecture that provides a necessary condition. In particular, we show that all Schubert varieties corresponding to the Coxeter elements of the Weyl group have the same tangent cone. Our main tool is the notion of pillar entries in the rank matrix counting the dimensions of the intersections of a given flag with the standard one. This notion is a version of Fulton’s essential set. We calculate the dimension of a Schubert variety in terms of the pillar entries of the rank matrix. © 2017, Institute for Mathematical Sciences (IMS), Stony Brook University, NY.
引用
收藏
页码:451 / 482
页数:31
相关论文
共 50 条
  • [41] TANGENT GROUPOID AND TANGENT CONES IN SUB-RIEMANNIAN GEOMETRY
    Mohsen, Omar
    DUKE MATHEMATICAL JOURNAL, 2024, 173 (16) : 3179 - 3218
  • [42] PROJECTED RICHARDSON VARIETIES AND AFFINE SCHUBERT VARIETIES
    He, Xuhua
    Lam, Thomas
    ANNALES DE L INSTITUT FOURIER, 2015, 65 (06) : 2385 - 2412
  • [43] Tangent and Normal Cones to Real Surfaces
    Donal O’SHEA(Mathematics Department
    )Les WILSON (Mathematics Department
    )
    数学季刊, 1995, (04) : 62 - 71
  • [44] SOME PROPERTIES OF REAL TANGENT CONES
    KENDIG, KM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (07): : A819 - A819
  • [45] Tangent cones and regularity of real hypersurfaces
    Ghomi, Mohammad
    Howard, Ralph
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 697 : 221 - 247
  • [46] Subspace Clustering via Tangent Cones
    Jalali, Amin
    Willett, Rebecca
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [47] ON THE EQUATIONS DEFINING TANGENT-CONES
    ROBBIANO, L
    VALLA, G
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1980, 88 (SEP) : 281 - 297
  • [48] TANGENT-CONES AND DINI DERIVATIVES
    PAPPALARDO, M
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 70 (01) : 97 - 107
  • [49] On NURBS algorithms using tangent cones
    Selimovic, Ilijas
    COMPUTER AIDED GEOMETRIC DESIGN, 2009, 26 (07) : 772 - 778
  • [50] SMOCKED METRIC SPACES AND THEIR TANGENT CONES
    Sormani, Christina
    Kazaras, Demetre
    Afrifa, David
    Antonetti, Victoria
    Dinowitz, Moshe
    Drillick, Hindy
    Farahzad, Maziar
    George, Shanell
    Hepburn, Aleah Lydeatte
    Huynh, Leslie Trang
    Minichiello, Emilio
    Pillati, Julinda Mujo
    Rendla, Srivishnupreeth
    Yamin, Ajmain
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2021, 33 (01) : 27 - 98