Stochastic Quantization of the Two-Dimensional Polymer Measure

被引:0
|
作者
S. Albeverio
Y. -Z. Hu
M. Röckner
X. Y. Zhou
机构
[1] Institut für Angewandte Mathematik,
[2] Universität Bonn,undefined
[3] D-53115 Bonn,undefined
[4] Germany,undefined
[5] Department of Mathematics,undefined
[6] University of Kansas,undefined
[7] Lawrence,undefined
[8] KS 66045,undefined
[9] USA,undefined
[10] Institute of Mathematical Sciences,undefined
[11] Academia Sinica,undefined
[12] Wuhan 53 430071,undefined
[13] China,undefined
[14] Fakultät für Mathematik,undefined
[15] Universität Bielefeld,undefined
[16] 33501 Bielefeld,undefined
[17] Germany,undefined
[18] Institute of Mathematics,undefined
[19] Beijing Normal University,undefined
[20] Beijing 100875,undefined
[21] People's Republic of China,undefined
[22] Institut für Mathematik,undefined
[23] Ruhr-Universität Bochum,undefined
[24] D-44780 Bochum,undefined
[25] Germany,undefined
来源
关键词
Key words. Two-dimensional polymer measure, Closability, Dirichlet forms, Diffusion processes, Ergodicity, Quasi-invariance. AMS Classification. Primary 60J65, Secondary 60H30.;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that there exists a diffusion process whose invariant measure is the two-dimensional polymer measure νg . The diffusion is constructed by means of the theory of Dirichlet forms on infinite-dimensional state spaces. We prove the closability of the appropriate pre-Dirichlet form which is of gradient type, using a general closability result by two of the authors. This result does not require an integration by parts formula (which does not hold for the two-dimensional polymer measure νg ) but requires the quasi-invariance of νg along a basis of vectors in the classical Cameron—Martin space such that the Radon—Nikodym derivatives (have versions which) form a continuous process. We also show the Dirichlet form to be irreducible or equivalently that the diffusion process is ergodic under time translations.
引用
收藏
页码:341 / 354
页数:13
相关论文
共 50 条
  • [21] An Enlarged Canonical Quantization Scheme and Quantization of a Free Particle on Two-Dimensional Sphere
    Zhang Zhong-Shuai
    Xiao Shi-Fa
    Xun Da-Mao
    Liu Quan-Hui
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2015, 63 (01) : 19 - 24
  • [22] QUANTIZATION OF TWO-DIMENSIONAL AFFINE BODIES WITH STABILIZED DILATATIONS
    Martens, Agnieszka
    REPORTS ON MATHEMATICAL PHYSICS, 2008, 62 (02) : 145 - 155
  • [23] QUANTIZATION OF THE MAGNETIC INDUCTION FOR TWO-DIMENSIONAL ELECTRONIC SYSTEMS
    WIDOM, A
    SRIVASTAVA, YN
    FRIEDMAN, MH
    PHYSICAL REVIEW B, 1985, 32 (08): : 5487 - 5488
  • [24] Quantization of a particle on a two-dimensional manifold of constant curvature
    Bracken, Paul
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (10) : 1 - 8
  • [25] An Enlarged Canonical Quantization Scheme and Quantization of a Free Particle on Two-Dimensional Sphere
    张中帅
    肖世发
    寻大毛
    刘全慧
    CommunicationsinTheoreticalPhysics, 2015, 63 (01) : 19 - 24
  • [26] The elliptic stochastic quantization of some two dimensional Euclidean QFTs
    Albeverio, Sergio
    De Vecchi, Francesco C.
    Gubinelli, Massimiliano
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (04): : 2372 - 2414
  • [27] A two-dimensional polymer growth model
    Vogt, M
    Hernandez, R
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (03): : 1575 - 1585
  • [28] Stochastic Quantization for the Fractional Edwards Measure
    Bock, Wolfgang
    Fattler, Torben
    Streit, Ludwig
    ACTA APPLICANDAE MATHEMATICAE, 2017, 151 (01) : 81 - 88
  • [29] Stochastic Quantization for the Fractional Edwards Measure
    Wolfgang Bock
    Torben Fattler
    Ludwig Streit
    Acta Applicandae Mathematicae, 2017, 151 : 81 - 88
  • [30] Elastic anisotropy measure for two-dimensional crystals
    Li, Ruishan
    Shao, Qian
    Gao, Enlai
    Liu, Ze
    EXTREME MECHANICS LETTERS, 2020, 34