Stochastic Quantization of the Two-Dimensional Polymer Measure

被引:0
|
作者
S. Albeverio
Y. -Z. Hu
M. Röckner
X. Y. Zhou
机构
[1] Institut für Angewandte Mathematik,
[2] Universität Bonn,undefined
[3] D-53115 Bonn,undefined
[4] Germany,undefined
[5] Department of Mathematics,undefined
[6] University of Kansas,undefined
[7] Lawrence,undefined
[8] KS 66045,undefined
[9] USA,undefined
[10] Institute of Mathematical Sciences,undefined
[11] Academia Sinica,undefined
[12] Wuhan 53 430071,undefined
[13] China,undefined
[14] Fakultät für Mathematik,undefined
[15] Universität Bielefeld,undefined
[16] 33501 Bielefeld,undefined
[17] Germany,undefined
[18] Institute of Mathematics,undefined
[19] Beijing Normal University,undefined
[20] Beijing 100875,undefined
[21] People's Republic of China,undefined
[22] Institut für Mathematik,undefined
[23] Ruhr-Universität Bochum,undefined
[24] D-44780 Bochum,undefined
[25] Germany,undefined
来源
关键词
Key words. Two-dimensional polymer measure, Closability, Dirichlet forms, Diffusion processes, Ergodicity, Quasi-invariance. AMS Classification. Primary 60J65, Secondary 60H30.;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that there exists a diffusion process whose invariant measure is the two-dimensional polymer measure νg . The diffusion is constructed by means of the theory of Dirichlet forms on infinite-dimensional state spaces. We prove the closability of the appropriate pre-Dirichlet form which is of gradient type, using a general closability result by two of the authors. This result does not require an integration by parts formula (which does not hold for the two-dimensional polymer measure νg ) but requires the quasi-invariance of νg along a basis of vectors in the classical Cameron—Martin space such that the Radon—Nikodym derivatives (have versions which) form a continuous process. We also show the Dirichlet form to be irreducible or equivalently that the diffusion process is ergodic under time translations.
引用
收藏
页码:341 / 354
页数:13
相关论文
共 50 条
  • [1] Stochastic quantization of the two-dimensional polymer measure
    Albeverio, S
    Hu, YZ
    Röckner, M
    Zhou, XY
    APPLIED MATHEMATICS AND OPTIMIZATION, 1999, 40 (03): : 341 - 354
  • [2] Stochastic Quantization of Two-Dimensional P ( Φ ) Quantum Field Theory
    Duch, Pawel
    Dybalski, Wojciech
    Jahandideh, Azam
    ANNALES HENRI POINCARE, 2024,
  • [4] A GENERAL THEOREM ON THE TWO-DIMENSIONAL QUANTIZATION OF COMPLEX VALUED STOCHASTIC SIGNALS
    BAIER, A
    AEU-ARCHIV FUR ELEKTRONIK UND UBERTRAGUNGSTECHNIK-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 1985, 39 (05): : 299 - 305
  • [5] Quantization of two-dimensional cosmology
    Kim, WT
    Yoon, MS
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1998, 33 : S495 - S499
  • [6] Canonical quantization of two-dimensional gravity
    S. N. Vergeles
    Journal of Experimental and Theoretical Physics, 2000, 90 : 1 - 16
  • [7] Two-dimensional Laplace source quantization
    Peric, ZH
    Jovkovic, JD
    Nikolic, ZJ
    TELSIKS 2001, VOL 1 & 2, PROCEEDINGS, 2001, : 33 - 36
  • [8] Canonical quantization of two-dimensional gravity
    Vergeles, SN
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2000, 90 (01) : 1 - 16
  • [9] QUANTIZATION OF ANOMALOUS TWO-DIMENSIONAL MODELS
    HALLIDAY, IG
    RABINOVICI, E
    SCHWIMMER, A
    CHANOWITZ, M
    NUCLEAR PHYSICS B, 1986, 268 (02) : 413 - 426
  • [10] On the quantization of a model of two-dimensional dilaton gravity
    Ahmed, MA
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1999, 114 (07): : 767 - 774