Variational symmetries and Lagrangian multiforms

被引:0
|
作者
Duncan Sleigh
Frank Nijhoff
Vincent Caudrelier
机构
[1] University of Leeds,School of Mathematics
来源
关键词
Integrable systems; Variational principle; Variational symmetries; Lagrangian multiforms; 35Q51; 35Q53; 35Q55; 35Q58; 70H06; 70H33; 37K05; 37K10;
D O I
暂无
中图分类号
学科分类号
摘要
By considering the closure property of a Lagrangian multiform as a conservation law, we use Noether’s theorem to show that every variational symmetry of a Lagrangian leads to a Lagrangian multiform. In doing so, we provide a systematic method for constructing Lagrangian multiforms for which the closure property and the multiform Euler–Lagrange (EL) both hold. We present three examples, including the first known example of a continuous Lagrangian 3-form: a multiform for the Kadomtsev–Petviashvili equation. We also present a new proof of the multiform EL equations for a Lagrangian k-form for arbitrary k.
引用
收藏
页码:805 / 826
页数:21
相关论文
共 50 条
  • [41] On the Variational Problems without Having Desired Variational Symmetries
    Nadjafikhah, Mehdi
    Dodangeh, Saeed
    Kabi-Nejad, Parastoo
    JOURNAL OF MATHEMATICS, 2013, 2013
  • [42] On the Lagrangian form of the variational equations of Lagrangian dynamical systems
    Delgado, J
    Núñez-Yépez, HN
    Salas-Brito, AL
    CHAOS SOLITONS & FRACTALS, 2004, 20 (05) : 925 - 935
  • [43] ON THE VARIATIONAL EQUATIONS ASSOCIATED WITH A LAGRANGIAN
    HENNAWI, A
    CELESTIAL MECHANICS, 1980, 22 (03): : 237 - 240
  • [44] Lagrangian description of the variational equations
    Arizmendi, CM
    Delgado, J
    Núñez-Yépez, HN
    Salas-Brito, AL
    CHAOS SOLITONS & FRACTALS, 2003, 18 (05) : 1065 - 1073
  • [45] Symmetries, Lagrangian and Conservation Laws for the Maxwell Equations
    Nail H. Ibragimov
    Acta Applicandae Mathematicae, 2009, 105 : 157 - 187
  • [46] Complex Lie Symmetries for Variational Problems
    Ali, Sajid
    Mahomed, Fazal M.
    Qadir, Asghar
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2008, 15 (Suppl 1) : 25 - 35
  • [47] Symmetries, variational principles, and quantum dynamics
    Manjavidze, J
    Sissakian, A
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2004, 2004 (01) : 205 - 212
  • [48] Variational symmetries as the existence of ignorable coordinates
    Torres del Castillo, G. F.
    Rubalcava-Garcia, I.
    EUROPEAN JOURNAL OF PHYSICS, 2017, 38 (02)
  • [49] EFFECTIVE LAGRANGIAN DESCRIPTION ON DISCRETE GAUGE SYMMETRIES
    BANKS, T
    NUCLEAR PHYSICS B, 1989, 323 (01) : 90 - 94
  • [50] Noether Symmetries of the Area-Minimizing Lagrangian
    Aslam, Adnan
    Qadir, Asghar
    JOURNAL OF APPLIED MATHEMATICS, 2012,