Kaluza–Klein cosmological model in f(R, T) gravity with Λ(T)

被引:0
|
作者
P. K. Sahoo
B. Mishra
S. K. Tripathy
机构
[1] Birla Institute of Technology and Science-Pilani,Department of Mathematics
[2] Indira Gandhi Institute of Technology,Department of Physics
[3] Sarang,undefined
来源
Indian Journal of Physics | 2016年 / 90卷
关键词
Kaluza–Klein space-time; gravity; Power law; Exponential law; Cosmological constant; 04.50.kd;
D O I
暂无
中图分类号
学科分类号
摘要
A class of Kaluza–Klein cosmological models in f(R, T) theory of gravity have been investigated. In the work, we have considered the functional f(R, T) to be in the form f(R,T)=f(R)+f(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(R,T)=f(R)+f(T)$$\end{document} with f(R)=λR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(R)=\lambda R$$\end{document} and f(T)=λT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T)=\lambda T$$\end{document}. Such a choice of the functional f(R, T) leads to an evolving effective cosmological constant Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} which depends on the stress energy tensor. The source of the matter field is taken to be a perfect cosmic fluid. The exact solutions of the field equations are obtained by considering a constant deceleration parameter which leads to two different aspects of the volumetric expansion, namely a power law and an exponential volumetric expansion. Keeping an eye on the accelerating nature of the universe in the present epoch, the dynamics and physical behaviour of the models have been discussed. From statefinder diagnostic pair, we have found that the model with exponential volumetric expansion behaves more like a lambda cold dark matter model.
引用
收藏
页码:485 / 493
页数:8
相关论文
共 50 条
  • [21] Standard cosmological evolution in the f(R) model to Kaluza-Klein cosmology
    Aghmohammadi, A.
    Saaidi, Kh
    Abolhassani, M. R.
    Vajdi, A.
    PHYSICA SCRIPTA, 2009, 80 (06)
  • [22] The anisotropic cosmological models in f(R, T) gravity with Λ(T)
    Chaubey, R.
    Shukla, A. K.
    PRAMANA-JOURNAL OF PHYSICS, 2017, 88 (04):
  • [23] The anisotropic cosmological models in f(R, T) gravity with Λ(T)
    R CHAUBEY
    A K SHUKLA
    Pramana, 2017, 88
  • [24] Massive and massless scalar field models for Kaluza-Klein universe in f(R, T) gravity
    Aktas, Can
    MODERN PHYSICS LETTERS A, 2019, 34 (11)
  • [25] Accelerating anisotropic cosmological model in f(R,T) theory of gravity
    Kumar, R. Santhi
    Satyannarayana, B.
    INDIAN JOURNAL OF PHYSICS, 2017, 91 (10) : 1293 - 1296
  • [26] Evaluation of transit cosmological model in f(R,Tφ) theory of gravity
    Jayas, Bhojraj Singh
    Bhardwaj, Vinod Kumar
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2024, 39 (29):
  • [27] Non-static cosmological model in f (R, T) gravity
    Mishra, B.
    Sahoo, P. K.
    Tarai, Sankarsan
    ASTROPHYSICS AND SPACE SCIENCE, 2015, 359 (01)
  • [28] Time dependent G and Λ cosmological model in f(R,T) gravity
    Kumrah, Leishingam
    Singh, S. Surendra
    Devi, Lambamayum Anjana
    NEW ASTRONOMY, 2022, 93
  • [29] Accelerating anisotropic cosmological model in f(R,T) theory of gravity
    R. Santhi Kumar
    B. Satyannarayana
    Indian Journal of Physics, 2017, 91 : 1293 - 1296
  • [30] Anisotropic tilted cosmological model in f(R,T) theory of gravity
    Pawar, D. D.
    Shahare, S. P.
    NEW ASTRONOMY, 2020, 75