3D Printed Edible Hydrogel Electrodes

被引:0
|
作者
Alex Keller
Leo Stevens
Gordon G. Wallace
Marc in het Panhuis
机构
[1] University of Wollongong,Soft Materials Group, School of Chemistry
[2] University of Wollongong,Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility
关键词
D O I
10.1557/adv.2015.10
中图分类号
学科分类号
摘要
We report on a hand-held reactive printing device used to pattern highly conductive, edible hydrogel wires formed from gellan gum, gelatin, cross-linkers and a common salt (NaCl). The conductivity of the gels when printed (190 ± 20 mS/cm) closely matched the conductivity recorded for cast systems (200 ± 19 mS/cm). Printing was observed to reduce the elastic modulus and failure strains of hydrogels under compression, but printed gels retained sufficient integrity for application as flexible conductive lines. We demonstrate that hand-held printing can utilize to pattern soft conductor elements within a simple electronic circuit.
引用
收藏
页码:527 / 532
页数:5
相关论文
共 50 条
  • [41] Evaluating 3D printed mesh geometries in ceramic LiB electrodes
    Marin-Rueda, J. R.
    Valera-Jimenez, J. F.
    Ramos-Fajardo, J. M.
    Pelaez-Tirado, I. M.
    Tair, S.
    Castro-Garcia, M.
    Canales-Vazquez, J.
    Perez-Flores, J. C.
    JOURNAL OF PHYSICS-ENERGY, 2024, 6 (02):
  • [42] 3D Printed Dry Electrodes for Electrophysiological Signal Monitoring: A Review
    Alsharif, Aljawharah A.
    Milan Cucuri, Nataly S. S.
    Mishra, Rishabh B.
    El-Atab, Nazek
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (07):
  • [43] Graph Theory Design of 3D Printed Conductive Lattice Electrodes
    Huddy, Julia E.
    Tiwari, Anand P.
    Zhao, Huan
    Li, Yan
    Scheideler, William J.
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (15)
  • [44] Evaluating 3D printed mesh geometries in ceramic LiB electrodes
    Marín-Rueda, J.R.
    Valera-Jiménez, J.F.
    Ramos-Fajardo, J.M.
    Peláez-Tirado, I.M.
    Tair, S.
    Castro-García, M.
    Canales-Vázquez, J.
    Pérez-Flores, J.C.
    JPhys Energy, 2024, 6 (02):
  • [45] Capabilities and limitations of 3D printed microserpentines and integrated 3D electrodes for stretchable and conformable biosensor applications
    Charles Didier
    Avra Kundu
    Swaminathan Rajaraman
    Microsystems & Nanoengineering, 6
  • [46] Capabilities and limitations of 3D printed microserpentines and integrated 3D electrodes for stretchable and conformable biosensor applications
    Didier, Charles
    Kundu, Avra
    Rajaraman, Swaminathan
    MICROSYSTEMS & NANOENGINEERING, 2020, 6 (01)
  • [47] 3D Printed
    Good, Andrew
    MATERIALS EVALUATION, 2016, 74 (07) : 984 - 989
  • [48] 3D Printed Implantable Hydrogel Bioelectronics for Electrophysiological Monitoring and Electrical Modulation
    Wang, Fucheng
    Xue, Yu
    Chen, Xingmei
    Zhang, Pei
    Shan, Liangjie
    Duan, Qingfang
    Xing, Junfei
    Lan, Yang
    Lu, Baoyang
    Liu, Ji
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (21)
  • [49] An anisotropic constitutive model for 3D printed hydrogel-fiber composites
    Chen, Zhe
    Lou, Ruishen
    Zhong, Danming
    Xiao, Rui
    Qu, Shaoxing
    Yang, Wei
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2021, 156
  • [50] 3D printed hydrogel for soft thermo-responsive smart window
    Chen, Lei
    Duan, Guihui
    Zhang, Ce
    Cheng, Ping
    Wang, Zhaolong
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2022, 4 (02)