Asymptotic Curvature of Moduli Spaces for Calabi–Yau Threefolds
被引:0
|
作者:
Thomas Trenner
论文数: 0引用数: 0
h-index: 0
机构:University of Cambridge,Department of Pure Mathematics
Thomas Trenner
P. M. H. Wilson
论文数: 0引用数: 0
h-index: 0
机构:University of Cambridge,Department of Pure Mathematics
P. M. H. Wilson
机构:
[1] University of Cambridge,Department of Pure Mathematics
来源:
Journal of Geometric Analysis
|
2011年
/
21卷
关键词:
Mirror symmetry;
Weil–Petersson metric;
Large complex structure limit points;
Large radius limit points;
Curvature;
14J32;
32Q25;
53A15;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Motivated by the classical statements of Mirror Symmetry, we study certain Kähler metrics on the complexified Kähler cone of a Calabi–Yau threefold, conjecturally corresponding to approximations to the Weil–Petersson metric near large complex structure limit for the mirror. In particular, the naturally defined Riemannian metric (defined via cup-product) on a level set of the Kähler cone is seen to be analogous to a slice of the Weil–Petersson metric near large complex structure limit. This enables us to give counterexamples to a conjecture of Ooguri and Vafa that the Weil–Petersson metric has non-positive scalar curvature in some neighborhood of the large complex structure limit point.
机构:
Capital Normal Univ, Sch Math, Beijing 100048, Peoples R China
Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USACapital Normal Univ, Sch Math, Beijing 100048, Peoples R China
Liu, Kefeng
Shen, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R ChinaCapital Normal Univ, Sch Math, Beijing 100048, Peoples R China