Accurately computing the electronic properties of a quantum ring

被引:0
|
作者
C. Neill
T. McCourt
X. Mi
Z. Jiang
M. Y. Niu
W. Mruczkiewicz
I. Aleiner
F. Arute
K. Arya
J. Atalaya
R. Babbush
J. C. Bardin
R. Barends
A. Bengtsson
A. Bourassa
M. Broughton
B. B. Buckley
D. A. Buell
B. Burkett
N. Bushnell
J. Campero
Z. Chen
B. Chiaro
R. Collins
W. Courtney
S. Demura
A. R. Derk
A. Dunsworth
D. Eppens
C. Erickson
E. Farhi
A. G. Fowler
B. Foxen
C. Gidney
M. Giustina
J. A. Gross
M. P. Harrigan
S. D. Harrington
J. Hilton
A. Ho
S. Hong
T. Huang
W. J. Huggins
S. V. Isakov
M. Jacob-Mitos
E. Jeffrey
C. Jones
D. Kafri
K. Kechedzhi
J. Kelly
机构
[1] Google Quantum AI,Department of Electrical and Computer Engineering
[2] University of Massachusetts,Pritzker School of Molecular Engineering
[3] University of Chicago,Department of Electrical and Computer Engineering
[4] University of California,Department of Physics
[5] Riverside,undefined
[6] University of California,undefined
[7] Santa Barbara,undefined
来源
Nature | 2021年 / 594卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A promising approach to study condensed-matter systems is to simulate them on an engineered quantum platform1–4. However, the accuracy needed to outperform classical methods has not been achieved so far. Here, using 18 superconducting qubits, we provide an experimental blueprint for an accurate condensed-matter simulator and demonstrate how to investigate fundamental electronic properties. We benchmark the underlying method by reconstructing the single-particle band structure of a one-dimensional wire. We demonstrate nearly complete mitigation of decoherence and readout errors, and measure the energy eigenvalues of this wire with an error of approximately 0.01 rad, whereas typical energy scales are of the order of 1 rad. Insight into the fidelity of this algorithm is gained by highlighting the robust properties of a Fourier transform, including the ability to resolve eigenenergies with a statistical uncertainty of 10−4 rad. We also synthesize magnetic flux and disordered local potentials, which are two key tenets of a condensed-matter system. When sweeping the magnetic flux we observe avoided level crossings in the spectrum, providing a detailed fingerprint of the spatial distribution of local disorder. By combining these methods we reconstruct electronic properties of the eigenstates, observing persistent currents and a strong suppression of conductance with added disorder. Our work describes an accurate method for quantum simulation5,6 and paves the way to study new quantum materials with superconducting qubits.
引用
收藏
页码:508 / 512
页数:4
相关论文
共 50 条
  • [41] Electronic properties of coupled quantum dots
    Machowska-Podsiadlo, E.
    Maczka, M.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05): : 1748 - 1750
  • [42] Electronic properties of superlattices on quantum rings
    da Costa, D. R.
    Chaves, A.
    Ferreira, W. P.
    Farias, G. A.
    Ferreira, R.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (16)
  • [43] COMPUTING GEAR INERTIA MORE ACCURATELY
    SCHUBERT, F
    MACHINE DESIGN, 1983, 55 (05) : 288 - 288
  • [44] Electronic properties of electromagnetic quantum structures
    Kim, N
    Lee, SJ
    Kang, TW
    Kim, MJ
    Ihm, G
    Sim, HS
    Chang, KJ
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2001, 39 (03) : 501 - 505
  • [45] Electronic properties of interacting quantum dots
    Apel, VM
    Anda, EV
    Davidovich, MA
    MICROELECTRONICS JOURNAL, 2005, 36 (11) : 1052 - 1054
  • [46] Electronic properties of a rough quantum film
    Hong, KM
    Kwok, PCK
    Chui, PC
    SOLID STATE COMMUNICATIONS, 1998, 107 (09) : 483 - 486
  • [47] Electronic properties of germanium quantum films
    Kholod, AN
    Saúl, A
    Fuhr, JD
    Borisenko, VE
    d'Avitaya, FA
    PHYSICAL REVIEW B, 2000, 62 (19) : 12949 - 12954
  • [48] On electronic properties of assemblies of quantum nanodots
    Remacle, F
    JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (20): : 4739 - 4747
  • [49] ELECTRONIC-PROPERTIES OF QUANTUM POINTS
    CHAPLIK, AV
    JETP LETTERS, 1989, 50 (01) : 44 - 47
  • [50] Accurately computing weak lensing convergence
    Koksbang, Sofie Marie
    Clarkson, Chris
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 486 (01) : L41 - L45