A generalization of metric, normed, and unitary spaces

被引:0
|
作者
A. A. Borubaev
机构
[1] Kyrgyz National University,
来源
Doklady Mathematics | 2014年 / 89卷
关键词
Banach Space; Normed Space; Quotient Space; Topological Vector Space; General Topology;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:154 / 156
页数:2
相关论文
共 50 条
  • [21] A METRIC CHARACTERIZATION OF NORMED LINEAR-SPACES
    GAHLER, S
    MURPHY, G
    MATHEMATISCHE NACHRICHTEN, 1981, 102 : 297 - 309
  • [22] A note on the completions of fuzzy metric spaces and fuzzy normed spaces
    Fang, JX
    FUZZY SETS AND SYSTEMS, 2002, 131 (03) : 399 - 407
  • [23] A new generalization of metric spaces: rectangular M-metric spaces
    Ozgur, Nihal Yilmaz
    Mlaiki, Nabil
    Tas, Nihal
    Souayah, Nizar
    MATHEMATICAL SCIENCES, 2018, 12 (03) : 223 - 233
  • [24] A new generalization of metric spaces: rectangular M-metric spaces
    Nihal Yılmaz Özgür
    Nabil Mlaiki
    Nihal Taş
    Nizar Souayah
    Mathematical Sciences, 2018, 12 : 223 - 233
  • [25] Generalization of sequences and convergence in metric spaces
    Ostrovsky, Alexey
    TOPOLOGY AND ITS APPLICATIONS, 2014, 171 : 63 - 70
  • [26] SOME RESULTS ON CONVERGENCES IN FUZZY METRIC SPACES AND FUZZY NORMED SPACES
    Cho, Kyugeun
    Lee, Chongsung
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (01): : 185 - 199
  • [27] METRIC SUBREGULARITY FOR NONCLOSED CONVEX MULTIFUNCTIONS IN NORMED SPACES
    Zheng, Xi Yin
    Ng, Kung Fu
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (03) : 601 - 617
  • [28] CONTINUITY OF MULTIVALUED METRIC PROJECTION IN LINEAR NORMED SPACES
    OSHMAN, EV
    NEVESENKO, NV
    DOKLADY AKADEMII NAUK SSSR, 1975, 223 (05): : 1064 - 1066
  • [29] The canonical partial metric and the uniform convexity on normed spaces
    Oltra, S.
    Romaguera, S.
    Sanchez-Perez, E. A.
    APPLIED GENERAL TOPOLOGY, 2005, 6 (02): : 185 - 194
  • [30] The Attouch-Wets topology in metric and normed spaces
    Beer, Gerald
    PACIFIC JOURNAL OF OPTIMIZATION, 2008, 4 (03): : 393 - 409