On the Non-existence of Meromorphic Solutions of Certain Types of Non-linear Differential Equations

被引:0
|
作者
Huifang Liu
Zhiqiang Mao
机构
[1] Jiangxi Normal University,College of Mathematics and Information Science
[2] Jiangxi Science and Technology Normal University,School of Mathematics and Computer
关键词
Nevanlinna theory; Differential polynomial; Non-linear differential equation; Meromorphic solution; 30D35; 34M05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study meromorphic solutions of non-linear differential equations of the form fn+Pd(f)=p1eα1(z)+p2eα2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^n+P_d(f)=p_1e^{\alpha _1(z)}+p_2e^{\alpha _2(z)}$$\end{document}, where α1,α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1,\alpha _2$$\end{document} are polynomials of degree k(≥1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k(\ge 1)$$\end{document}, p1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1$$\end{document}, p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_2$$\end{document} are small meromorphic functions of ezk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{z^k}$$\end{document}, Pd(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\mathrm{d}(f)$$\end{document} is a differential polynomial in f of degree d with small meromorphic functions of f as its coefficients. Some sufficient conditions on the non-existence of meromorphic solutions of such equations are provided. Our results complement some previous results.
引用
收藏
页码:383 / 399
页数:16
相关论文
共 50 条
  • [1] On the Non-existence of Meromorphic Solutions of Certain Types of Non-linear Differential Equations
    Liu, Huifang
    Mao, Zhiqiang
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2019, 19 (03) : 383 - 399
  • [2] Meromorphic Solutions of Certain Types of Non-linear Differential Equations
    Huifang Liu
    Zhiqiang Mao
    Computational Methods and Function Theory, 2020, 20 : 319 - 332
  • [3] Meromorphic Solutions of Certain Types of Non-linear Differential Equations
    Liu, Huifang
    Mao, Zhiqiang
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2020, 20 (02) : 319 - 332
  • [4] ON MEROMORPHIC SOLUTIONS OF CERTAIN TYPE OF NON-LINEAR DIFFERENTIAL EQUATIONS
    Liao, Liang-Wen
    Yang, Chung-Chun
    Zhang, Jian-Jun
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (02) : 581 - 593
  • [5] Meromorphic solutions of three certain types of non-linear difference equations
    Chen, Min Feng
    Huang, Zhi Bo
    Gao, Zong Sheng
    AIMS MATHEMATICS, 2021, 6 (11): : 11708 - 11722
  • [6] On the existence or non-existence of solutions for certain backward stochastic differential equations
    Lepeltier, JP
    San Martín, J
    BERNOULLI, 2002, 8 (01) : 123 - 137
  • [7] Existence and non-existence of global solutions for a class of non-linear wave equations
    Chen, GW
    Yang, ZJ
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2000, 23 (07) : 615 - 631
  • [8] Non-linear differential equations with transcendental meromorphic solutions
    Ishizaki, K
    Wang, YF
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2001, 70 : 88 - 118
  • [9] On the Exact Forms of Meromorphic Solutions of Certain Non-linear Delay-Differential Equations
    Zinelaabidine Latreuch
    Tania Biswas
    Abhijit Banerjee
    Computational Methods and Function Theory, 2022, 22 : 401 - 432
  • [10] On the Exact Forms of Meromorphic Solutions of Certain Non-linear Delay-Differential Equations
    Latreuch, Zinelaabidine
    Biswas, Tania
    Banerjee, Abhijit
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2022, 22 (03) : 401 - 432