Meromorphic Solutions of Certain Types of Non-linear Differential Equations

被引:1
|
作者
Huifang Liu
Zhiqiang Mao
机构
[1] Jiangxi Normal University,College of Mathematics and Information Science
[2] Jiangxi Science and Technology Normal University,School of Mathematics and Computer
关键词
Nevanlinna theory; Differential polynomial; Differential equation; Meromorphic solution; 34M05; 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
Let p1,p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1, p_2$$\end{document} and α1,α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1, \alpha _2$$\end{document} be non-zero constants, and Pd(z,f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_d(z, f)$$\end{document} be a differential polynomial in f of degree d. Li obtained the forms of meromorphic solutions with few poles of the non-linear differential equations fn+Pd(z,f)=p1eα1z+p2eα2z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^n+P_d(z, f)=p_1e^{\alpha _1 z}+p_2e^{\alpha _2 z}$$\end{document} provided α1≠α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1\ne \alpha _2$$\end{document} and d≤n-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le n-2$$\end{document}. In this paper, given d=n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=n-1$$\end{document}, we find the forms of meromorphic solutions with few poles of the above equations under some restrictions on α1,α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1, \alpha _2$$\end{document}. Some examples are given to illustrate our results.
引用
收藏
页码:319 / 332
页数:13
相关论文
共 50 条
  • [1] Meromorphic Solutions of Certain Types of Non-linear Differential Equations
    Liu, Huifang
    Mao, Zhiqiang
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2020, 20 (02) : 319 - 332
  • [2] On the Non-existence of Meromorphic Solutions of Certain Types of Non-linear Differential Equations
    Liu, Huifang
    Mao, Zhiqiang
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2019, 19 (03) : 383 - 399
  • [3] On the Non-existence of Meromorphic Solutions of Certain Types of Non-linear Differential Equations
    Huifang Liu
    Zhiqiang Mao
    [J]. Computational Methods and Function Theory, 2019, 19 : 383 - 399
  • [4] ON MEROMORPHIC SOLUTIONS OF CERTAIN TYPE OF NON-LINEAR DIFFERENTIAL EQUATIONS
    Liao, Liang-Wen
    Yang, Chung-Chun
    Zhang, Jian-Jun
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (02) : 581 - 593
  • [5] Meromorphic solutions of three certain types of non-linear difference equations
    Chen, Min Feng
    Huang, Zhi Bo
    Gao, Zong Sheng
    [J]. AIMS MATHEMATICS, 2021, 6 (11): : 11708 - 11722
  • [6] Non-linear differential equations with transcendental meromorphic solutions
    Ishizaki, K
    Wang, YF
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2001, 70 : 88 - 118
  • [7] On the Exact Forms of Meromorphic Solutions of Certain Non-linear Delay-Differential Equations
    Zinelaabidine Latreuch
    Tania Biswas
    Abhijit Banerjee
    [J]. Computational Methods and Function Theory, 2022, 22 : 401 - 432
  • [8] On the Exact Forms of Meromorphic Solutions of Certain Non-linear Delay-Differential Equations
    Latreuch, Zinelaabidine
    Biswas, Tania
    Banerjee, Abhijit
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2022, 22 (03) : 401 - 432
  • [9] On Meromorphic Solutions of Non-linear Differential-Difference Equations
    Zhao, Mingxin
    Huang, Zhigang
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (04) : 1444 - 1466
  • [10] On Meromorphic Solutions of Non-linear Differential-Difference Equations
    MingXin Zhao
    Zhigang Huang
    [J]. Journal of Nonlinear Mathematical Physics, 2023, 30 : 1444 - 1466