Combinatorial Aspects of the Splitting Number

被引:0
|
作者
Shimon Garti
Saharon Shelah
机构
[1] The Hebrew University of Jerusalem,Institute of Mathematics
[2] The Hebrew University of Jerusalem,Institute of Mathematics
[3] Rutgers University,Department of Mathematics
来源
Annals of Combinatorics | 2012年 / 16卷
关键词
03E; splitting number; partition calculus; Mathias forcing; weak diamond;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the splitting number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{s}}$$\end{document} and polarized partition relations. In the first section we define the notion of strong splitting families, and prove that its existence is equivalent to the failure of the polarized relation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\begin{array}{lll}\mathfrak{s} \\ \omega \end{array} \right) \rightarrow {\left(\begin{array}{ll}\mathfrak{s} \\ \omega \end{array} \right)}^{1, 1}_{2}$$\end{document}. We show that the existence of a strong splitting family is consistent with ZFC, and that the strong splitting number equals the splitting number, when it exists. Consequently, we can put some restriction on the possibility that s is singular. In the second section we deal with the polarized relation under the weak diamond, and we prove that the strong polarized relation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\begin{array}{lll}2^{\omega} \\ \omega \end{array} \right) \rightarrow {\left(\begin{array}{ll}2^{\omega} \\ \omega \end{array} \right)}^{1, 1}_{2}$$\end{document}is consistent with ZFC, even when cf \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(2^{\omega}) = \aleph_{1}}$$\end{document} (hence the weak diamond holds).
引用
收藏
页码:709 / 717
页数:8
相关论文
共 50 条
  • [21] Combinatorial aspects of mirror symmetry
    Batyrev, Victor
    Nill, Benjamin
    INTEGER POINTS IN POLYHEDRA - GEOMETRY, NUMBER THEORY, REPRESENTATION THEORY, ALGEBRA, OPTIMIZATION, STATISTICS, 2008, 452 : 35 - +
  • [22] Algorithmic Aspects of Combinatorial Discrepancy
    Bansal, Nikhil
    PANORAMA OF DISCREPANCY THEORY, 2014, 2107 : 425 - 457
  • [23] Combinatorial aspects of exclusion and parastatistics
    Chaturvedi, S
    HIGHLIGHTS IN CONDENSED MATTER PHYSICS, 2003, 695 : 145 - 151
  • [24] Combinatorial aspects of jump codes
    Charnes, C
    Beth, T
    DISCRETE MATHEMATICS, 2005, 294 (1-2) : 43 - 51
  • [25] COMBINATORIAL ASPECTS OF BOSON ALGEBRA
    KATRIEL, J
    LETTERE AL NUOVO CIMENTO, 1974, 10 (13): : 565 - 567
  • [26] Interlacing and smoothing: Combinatorial aspects
    M. L. Blank
    Problems of Information Transmission, 2014, 50 : 350 - 363
  • [27] Combinatorial Aspects of Mixed Arrangements
    Wu, Dong
    Hu, Yi
    ARS COMBINATORIA, 2013, 110 : 343 - 353
  • [28] Interlacing and Smoothing: Combinatorial Aspects
    Blank, M. L.
    PROBLEMS OF INFORMATION TRANSMISSION, 2014, 50 (04) : 350 - 363
  • [29] Combinatorial Aspects of Flashcard Games
    Lewis, Joel Brewster
    Li, Nan
    ANNALS OF COMBINATORICS, 2014, 18 (03) : 459 - 472
  • [30] Combinatorial bounds and characterizations of splitting authentication codes
    Michael Huber
    Cryptography and Communications, 2010, 2 : 173 - 185