Combinatorial Aspects of the Splitting Number

被引:0
|
作者
Shimon Garti
Saharon Shelah
机构
[1] The Hebrew University of Jerusalem,Institute of Mathematics
[2] The Hebrew University of Jerusalem,Institute of Mathematics
[3] Rutgers University,Department of Mathematics
来源
Annals of Combinatorics | 2012年 / 16卷
关键词
03E; splitting number; partition calculus; Mathias forcing; weak diamond;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the splitting number \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{s}}$$\end{document} and polarized partition relations. In the first section we define the notion of strong splitting families, and prove that its existence is equivalent to the failure of the polarized relation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\begin{array}{lll}\mathfrak{s} \\ \omega \end{array} \right) \rightarrow {\left(\begin{array}{ll}\mathfrak{s} \\ \omega \end{array} \right)}^{1, 1}_{2}$$\end{document}. We show that the existence of a strong splitting family is consistent with ZFC, and that the strong splitting number equals the splitting number, when it exists. Consequently, we can put some restriction on the possibility that s is singular. In the second section we deal with the polarized relation under the weak diamond, and we prove that the strong polarized relation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left(\begin{array}{lll}2^{\omega} \\ \omega \end{array} \right) \rightarrow {\left(\begin{array}{ll}2^{\omega} \\ \omega \end{array} \right)}^{1, 1}_{2}$$\end{document}is consistent with ZFC, even when cf \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(2^{\omega}) = \aleph_{1}}$$\end{document} (hence the weak diamond holds).
引用
收藏
页码:709 / 717
页数:8
相关论文
共 50 条