This paper deals with the splitting number \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathfrak{s}}$$\end{document} and polarized partition relations. In the first section we define the notion of strong splitting families, and prove that its existence is equivalent to the failure of the polarized relation\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left(\begin{array}{lll}\mathfrak{s} \\ \omega \end{array} \right) \rightarrow {\left(\begin{array}{ll}\mathfrak{s} \\ \omega \end{array} \right)}^{1, 1}_{2}$$\end{document}. We show that the existence of a strong splitting family is consistent with ZFC, and that the strong splitting number equals the splitting number, when it exists. Consequently, we can put some restriction on the possibility that s is singular. In the second section we deal with the polarized relation under the weak diamond, and we prove that the strong polarized relation\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left(\begin{array}{lll}2^{\omega} \\ \omega \end{array} \right) \rightarrow {\left(\begin{array}{ll}2^{\omega} \\ \omega \end{array} \right)}^{1, 1}_{2}$$\end{document}is consistent with ZFC, even when cf \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${(2^{\omega}) = \aleph_{1}}$$\end{document} (hence the weak diamond holds).