ℋ-matrices for Convection-diffusion Problems with Constant Convection

被引:0
|
作者
Sabine Le Borne
机构
[1] Tennessee Technological University Department of Mathematics Box 5054 Cookeville TN 38505 USA e-mail: sleborne@tntech.edu,
来源
Computing | 2003年 / 70卷
关键词
Mathematics Subject Classification: 65F05, 65F30, 65F50.; Keywords: Hierarchical matrices, data-sparse approximation, dominant convection;
D O I
暂无
中图分类号
学科分类号
摘要
∞-coefficients. This paper analyses the application of hierarchical matrices to the convection-dominant convection-diffusion equation with constant convection. In the case of increasing convection, the convergence of a standard ℋ-matrix approximant towards the original matrix will deteriorate. We derive a modified partitioning and admissibility condition that ensures good convergence also for the singularly perturbed case.
引用
收藏
页码:261 / 274
页数:13
相关论文
共 50 条
  • [21] Solution of convection-diffusion problems with the memory terms
    Kacur, J
    APPLIED NONLINEAR ANALYSIS, 1999, : 199 - 212
  • [22] Analysis of the DGFEM for nonlinear convection-diffusion problems
    Charles University Prague, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Praha 8, Czech Republic
    Electron. Trans. Numer. Anal., 2008, (33-48):
  • [23] A fractional step θ-method for convection-diffusion problems
    Chrispell, J. C.
    Ervin, V. J.
    Jenkins, E. W.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) : 204 - 218
  • [24] THE CHARACTERISTIC METHOD FOR THE STATIONS CONVECTION-DIFFUSION PROBLEMS
    BERMUDEZ, A
    DURANY, J
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1987, 21 (01): : 7 - 26
  • [25] AD-FDSD for convection-diffusion problems
    Zhang, Yang
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (01) : 257 - 271
  • [26] Boundary knot method for convection-diffusion problems
    Muzik, Juraj
    XXIV R-S-P SEMINAR, THEORETICAL FOUNDATION OF CIVIL ENGINEERING (24RSP) (TFOCE 2015), 2015, 111 : 582 - 588
  • [27] ANALYSIS OF THE DGFEM FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS
    Feistauer, Miloslav
    Kucera, Vaclav
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 32 : 33 - 48
  • [28] A hybrid multigrid method for convection-diffusion problems
    Khelifi, S. Chaabane
    Mechitoua, N.
    Huelsemann, F.
    Magoules, F.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 711 - 719
  • [29] Solution of convection-diffusion problems with the memory terms
    Kacur, J
    COMPUTATIONAL METHODS FOR FLOW AND TRANSPORT IN POROUS MEDIA, 2000, 17 : 93 - 106
  • [30] An adaptive multigrid strategy for convection-diffusion problems
    Vasileva, D
    Kuut, A
    Hemker, PW
    LARGE-SCALE SCIENTIFIC COMPUTING, 2006, 3743 : 138 - 145