Three-dimensional finite element analysis on cochlear implantation electrode insertion

被引:0
|
作者
Liu-Jie Ren
Yi Yu
Yu-Heng Zhang
Xin-Dong Liu
Zeng-Jun Sun
Wen-Juan Yao
Tian-Yu Zhang
Cheng Wang
Chen-Long Li
机构
[1] NHC Key Laboratory of Hearing Medicine (Fudan University),Department of Facial Plastic Reconstructive Surgery, ENT Institute, Eye and ENT Hospital
[2] Shanghai University of Medicine and Health Sciences,School of Medical Instrumentation
[3] Shanghai Engineering Research Center of Cochlear Implants,School of Mechanics and Engineering Science, Shanghai Institute of Applied Mathematics and Mechanics
[4] Shanghai University,undefined
关键词
Cochlear implant; Electrode array; Finite element; Insertion force; Contact pressure;
D O I
暂无
中图分类号
学科分类号
摘要
Studying the insertion process of cochlear implant (CI) electrode array (EA) is important to ensure successful, sufficient, and safe implantation. A three-dimensional finite element (FE) model was developed to simulate the insertion process. The cochlear structures were reconstructed from an average statistical shape model (SSM) of human cochlea. The electrode is simplified as a long and tapered beam of homogeneous elastic materials, contacting and interacting with the stiff cochlear structures. A quasi-static insertion simulation was conducted, the insertion force and the contact pressure between the electrode and the cochlear wall, were calculated to evaluate the smoothness of insertion and the risk of potential cochlear trauma. Based on this model, different EA designs were analyzed, including the Young’s modulus, the straight or bended shape, the normal or a more tapped section size. The influence of the insertion angle was also discussed. Our simulations indicate that reducing the EA Young’s modulus, tapering and pre-bending are effective ways to ensure safe and successful EA implantation. This model is beneficial for optimizing EA designs and is potentially useful for designing patient-specific CI surgery.
引用
收藏
页码:467 / 478
页数:11
相关论文
共 50 条
  • [21] Three-dimensional finite element analysis of subdural hematoma
    Huang, HM
    Lee, MC
    Chiu, WT
    Chen, CT
    Lee, SY
    JOURNAL OF TRAUMA-INJURY INFECTION AND CRITICAL CARE, 1999, 47 (03): : 538 - 544
  • [22] Finite element analysis of three-dimensional RTM process
    Deb, MK
    Reddy, MP
    Mayavaram, RS
    Baumann, CE
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 1999, 18 (11) : 968 - 978
  • [23] A parallel environment for three-dimensional finite element analysis
    Moretti, CO
    Neto, JBC
    Bittencourt, TN
    Martha, LF
    DEVELOPMENTS IN ENGINEERING COMPUTATIONAL TECHNOLOGY, 2000, : 283 - 287
  • [24] A three-dimensional finite element analysis of the sports mouthguard
    Gialain, Ivan Onone
    Coto, Neide Pena
    Driemeier, Larissa
    Noritomi, Pedro Yoshito
    Brito e Dias, Reinaldo
    DENTAL TRAUMATOLOGY, 2016, 32 (05) : 409 - 415
  • [25] Finite element analysis of three-dimensional RTM process
    Deb, MK
    Reddy, MP
    Mayavaram, RS
    Baumann, CE
    CONFERENCE PROCEEDINGS AT ANTEC '98: PLASTICS ON MY MIND, VOLS I-3: VOL I; PROCESSING, VOL II; SPECIAL AREAS, VOL III; MATERIALS, 1998, 44 : 2311 - 2315
  • [26] Three-dimensional finite element analysis of tube spinning
    Hua, FA
    Yang, YS
    Zhang, YN
    Guo, MH
    Guo, DY
    Tong, WH
    Hu, ZQ
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2005, 168 (01) : 68 - 74
  • [27] Finite element procedures for three-dimensional pavement analysis
    Hjelmstad, KD
    Kim, J
    Zuo, QH
    AIRCRAFT/PAVEMENT TECHNOLOGY: IN THE MIDST OF CHANGE, 1997, : 125 - 137
  • [28] Three-dimensional finite element analysis of a strutted excavation
    Chew, SH
    Yong, KY
    Lim, AYK
    COMPUTER METHODS AND ADVANCES IN GEOMECHANICS, VOL 3, 1997, : 1915 - 1920
  • [29] Three-dimensional finite element analysis of the Senise landslide
    Troncone, Antonello
    Conte, Enrico
    Donato, Antonio
    VI ITALIAN CONFERENCE OF RESEARCHERS IN GEOTECHNICAL ENGINEERING, CNRIG2016 - GEOTECHNICAL ENGINEERING IN MULTIDISCIPLINARY RESEARCH: FROM MICROSCALE TO REGIONAL SCALE, 2016, 158 : 212 - 217
  • [30] Analysis of Cochlear Morphology for Cochlear Implantation Using Three-Dimensional Reconstruction of Computed Tomography Images
    Jun, Beomcho
    Song, Sunwha
    AUDIOLOGY AND NEUROTOLOGY, 2024, 29 (03) : 207 - 215