General Steerable Two-sided Clifford Fourier Transform, Convolution and Mustard Convolution

被引:0
|
作者
Eckhard Hitzer
机构
来源
关键词
Primary 44A35; Secondary 11E88; 15A66; 43A32; 30G35; Convolution; Mustard convolution; two-sided Clifford Fourier transform; Clifford algebra signals; spatial domain; frequency domain;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we use the general steerable two-sided Clifford Fourier transform (CFT), and relate the classical convolution of Clifford algebra-valued signals over Rp,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{p,q}}$$\end{document} with the (equally steerable) Mustard convolution. A Mustard convolution can be expressed in the spectral domain as the point wise product of the CFTs of the factor functions. In full generality we express the classical convolution of Clifford algebra signals in terms of finite linear combinations of Mustard convolutions, and vice versa the Mustard convolution of Clifford algebra signals in terms of finite linear combinations of classical convolutions.
引用
收藏
页码:2215 / 2234
页数:19
相关论文
共 50 条