General two-sided quaternion Fourier transform, convolution and Mustard convolution

被引:0
|
作者
Eckhard Hitzer
机构
来源
关键词
Convolution; Mustard convolution; Two-sided quaternion Fourier transform; Quaternion signals; Spatial domain; Frequency domain;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we use the general two-sided quaternion Fourier transform (QFT), and relate the classical convolution of quaternion-valued signals over R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb R}^2}$$\end{document} with the Mustard convolution. A Mustard convolution can be expressed in the spectral domain as the point wise product of the QFTs of the factor functions. In full generality do we express the classical convolution of quaternion signals in terms of finite linear combinations of Mustard convolutions, and vice versa the Mustard convolution of quaternion signals in terms of finite linear combinations of classical convolutions.
引用
收藏
页码:381 / 395
页数:14
相关论文
共 50 条