Schur convexity for two classes of symmetric functions and their applications

被引:0
|
作者
Mingbao Sun
Nanbo Chen
Songhua Li
Yinghui Zhang
机构
[1] Hunan Institute of Science and Technology,School of Mathematics
关键词
Symmetric function; Schur convexity; Inequality; 05E05; 26B25; 52A40;
D O I
暂无
中图分类号
学科分类号
摘要
For x = (x1, x2, ⋯, xn) ∈ ℝ+n ∪ ℝ−n, the symmetric functions Fn(x, r) and Gn(x, r) are defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n (x,r) = F_n (x_1 ,x_2 , \cdots ,x_n ;r) = \sum\limits_{1 \leqslant i_1 < i_2 < \cdots < i_r \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 + x_{i_j } }} {{x_{i_j } }}} }$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n (x,r) = G_n (x_1 ,x_2 , \cdots ,x_n ;r) = \sum\limits_{1 \leqslant i_1 < i_2 < \cdots < i_r \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 - x_{i_j } }} {{x_{i_j } }}} } ,$$\end{document} respectively, where r = 1, 2, ⋯, n, and i1, i2, ⋯, in are positive integers. In this paper, the Schur convexity of Fn(x, r) and Gn(x, r) are discussed. As applications, by a bijective transformation of independent variable for a Schur convex function, the authors obtain Schur convexity for some other symmetric functions, which subsumes the main results in recent literature; and by use of the theory of majorization establish some inequalities. In particular, the authors derive from the results of this paper the Weierstrass inequalities and the Ky Fan’s inequality, and give a generalization of Safta’s conjecture in the n-dimensional space and others.
引用
收藏
页码:969 / 990
页数:21
相关论文
共 50 条
  • [21] Schur convexity for the ratios of the Hamy and generalized Hamy symmetric functions
    Qian, Wei-Mao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [22] SCHUR-CONVEXITY, SCHUR GEOMETRIC AND SCHUR HARMONIC CONVEXITIES OF DUAL FORM OF A CLASS SYMMETRIC FUNCTIONS
    Shi, Huan-Nan
    Zhang, Jing
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (02): : 349 - 358
  • [23] The Schur Harmonic Convexity of the Hamy Symmetric Function and Its Applications
    Chu, Yuming
    Lv, Yupei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [24] The Schur Harmonic Convexity of the Hamy Symmetric Function and Its Applications
    Yuming Chu
    Yupei Lv
    Journal of Inequalities and Applications, 2009
  • [25] Schur-convexity for a class of symmetric function and its applications
    Guan, KZ
    Shen, JH
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2006, 9 (02): : 199 - 210
  • [26] The Schur Multiplicative and Harmonic Convexities for Three Classes of Symmetric Functions
    Sun, Ming-bao
    Li, Xin-ping
    Zhang, Ying-hui
    Zhang, Zai-yuan
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [27] Schur-Convexity of the Mean of Convex Functions for Two Variables
    Shi, Huan-Nan
    Wang, Dong-Sheng
    Fu, Chun-Ru
    AXIOMS, 2022, 11 (12)
  • [28] Schur-convexity of the complete symmetric function
    Guan, Kaizhong
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2006, 9 (04): : 567 - 576
  • [29] Schur-convexity, Schur-geometric and Schur-harmonic convexity for a composite function of complete symmetric function
    Shi, Huan-Nan
    Zhang, Jing
    Ma, Qing-Hua
    SPRINGERPLUS, 2016, 5
  • [30] Schur Convexity and Inequalities for a Multivariate Symmetric Function
    Sun, Ming-Bao
    Li, Xin-Ping
    Tang, Sheng-Fang
    Zhang, Zai-Yun
    JOURNAL OF FUNCTION SPACES, 2020, 2020