Facial Expression Recognition Using Machine Learning and Deep Learning Techniques: A Systematic Review

被引:0
|
作者
Mohana M. [1 ]
Subashini P. [1 ]
机构
[1] Centre for Machine Learning and Intelligence, Department of Computer Science, Avinashilingam Institute, Coimbatore
关键词
Deep learning (DL); Face detection; Facial emotion; Facial Expression Recognition (FER); Machine learning (ML); Survey;
D O I
10.1007/s42979-024-02792-7
中图分类号
学科分类号
摘要
In the contemporary era, Facial Expression Recognition (FER) plays a pivotal role in numerous fields due to its vast application areas, such as e-learning, healthcare, marketing, and psychology, to name a few examples. Several research studies have been conducted on FER, and many reviews are available. The existing FER review paper focused on presenting a standard pipeline for FER to predict basic expressions. However, previous studies have not given an adequate amount of importance to FER datasets and their influence on affecting FER system performance. In this systematic review, 105 papers retrieved papers from IEEE, ACM, Science Direct, Scopus, Web of Science, and Springer from the years 2002 to 2023, following systematic review guidelines. Review protocol and research questions are also developed for the analysis of study results. The review identified that the accuracy of the FER system in controlled and spontaneous facial expression datasets is being affected, along with other challenges such as illumination, pose, and scale variation. Furthermore, this paper comparatively analyzed the FER model in both machine and deep learning techniques, including face detection, pre-processing, handcrafted feature extraction techniques, and emotion classifiers. In addition, we discussed some unresolved issues in FER and suggested solutions to enhance FER system performance further. In the future, multimodal FER systems need to be developed for real-time scenarios, considering the computational efficiency of model performance when integrating more than one model and dataset to achieve promising accuracy and reduce error rates. © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024.
引用
收藏
相关论文
共 50 条
  • [31] AI in Endoscopic Gastrointestinal Diagnosis: A Systematic Review of Deep Learning and Machine Learning Techniques
    Lewis, Jovita Relasha
    Pathan, Sameena
    Kumar, Preetham
    Dias, Cifha Crecil
    [J]. IEEE Access, 2024, 12 : 163764 - 163786
  • [32] A Comparison of Machine Learning and Deep Learning Techniques for Activity Recognition using Mobile Devices
    Baldominos, Alejandro
    Cervantes, Alejandro
    Saez, Yago
    Isasi, Pedro
    [J]. SENSORS, 2019, 19 (03)
  • [33] Software fault prediction using data mining, machine learning and deep learning techniques: A systematic literature review
    Batool, Iqra
    Khan, Tamim Ahmed
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [34] REVIEW OF CROP YIELD ESTIMATION USING MACHINE LEARNING AND DEEP LEARNING TECHNIQUES
    Modi, Anitha
    Sharma, Priyanka
    Saraswat, Deepti
    Mehta, Rachana
    [J]. SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2022, 23 (02): : 59 - 80
  • [35] Cancer detection and segmentation using machine learning and deep learning techniques: a review
    Rai, Hari Mohan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 27001 - 27035
  • [36] Using a sparse learning relevance vector machine in facial expression recognition
    Wong, W. S.
    Chan, W.
    Datcu, D.
    Rothkrantz, L. J. M.
    [J]. EUROMEDIA '2006, 2006, : 33 - +
  • [37] Cancer detection and segmentation using machine learning and deep learning techniques: a review
    Hari Mohan Rai
    [J]. Multimedia Tools and Applications, 2024, 83 : 27001 - 27035
  • [38] Extreme Learning Machine Ensemble Using Bagging for Facial Expression Recognition
    Ghimire, Deepak
    Lee, Joonwhoan
    [J]. JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2014, 10 (03): : 443 - 458
  • [39] Automated Facial Expression Recognition and Age Estimation Using Deep Learning
    Rizwan, Syeda Amna
    Ghadi, Yazeed Yasin
    Jalal, Ahmad
    Kim, Kibum
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03): : 5235 - 5252
  • [40] Virtual facial expression recognition using deep CNN with ensemble learning
    Chirra, Venkata Rami Reddy
    Uyyala, Srinivasulu Reddy
    Kolli, Venkata Krishna Kishore
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (12) : 10581 - 10599