Shifted convolution sums related to Hecke–Maass forms

被引:0
|
作者
Hengcai Tang
Jie Wu
机构
[1] Henan University,School of Mathematics and Statistics, Institute of Modern Mathematics
[2] Université Paris-Est Créteil,CNRS LAMA 8050, Laboratoire d’Analyse et de Mathématiques Appliquées
来源
The Ramanujan Journal | 2021年 / 55卷
关键词
Fourier coefficients; Rankin–Selberg ; -function; Sieve method; 11F30; 11F11; 11F66;
D O I
暂无
中图分类号
学科分类号
摘要
Let ϕ(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (z)$$\end{document} be a primitive Hecke–Maass cusp forms with Laplace eigenvalue 14+t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{1}{4}+t^2$$\end{document}. Denote by L(s,symmϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(s, \mathrm{sym}^m\phi )$$\end{document} the m-th symmetric power L-function associated to ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} and by λsymmϕ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\mathrm{sym}^m\phi }(n)$$\end{document} the n-th coefficient of the Dirichlet expansion of L(s,symmϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(s, \mathrm{sym}^m\phi )$$\end{document}. For any nonzero integer ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} we prove ∑n⩽xλϕ(n)λϕ(n+ℓ)≪ϕ,ℓx(logx)0.187(x⩾3).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{n\leqslant x} \left| \lambda _{\phi }(n)\lambda _{\phi }(n+\ell )\right| \ll _{\phi , \ell } \frac{x}{(\log x)^{0.187}} \qquad (x\geqslant 3). \end{aligned}$$\end{document}This improves Holowinsky’s corresponding result, which requires 16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tfrac{1}{6}$$\end{document} in place of 0.187. for all x⩾3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\geqslant 3$$\end{document}. Further assuming that L(s,sym10ϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(s, \mathrm{sym}^{10}\phi )$$\end{document} and L(s,sym12ϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(s, \mathrm{sym}^{12}\phi )$$\end{document} are automorphic cuspidal, we obtain a conditional generalization to the symmetric square case: ∑n⩽xλsym2ϕ(n)λsym2ϕ(n+ℓ)≪ϕ,ℓx(logx)0.196(x⩾3).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{n\leqslant x} \left| \lambda _{\mathrm{sym}^2\phi }(n)\lambda _{\mathrm{sym}^2\phi }(n+\ell )\right| \ll _{\phi , \ell } \frac{x}{(\log x)^{0.196}} \qquad (x\geqslant 3). \end{aligned}$$\end{document}
引用
收藏
页码:1083 / 1104
页数:21
相关论文
共 50 条
  • [31] Central value of the symmetric square L-functions related to Hecke–Maass forms
    Hengcai Tang
    Zhao Xu
    Lithuanian Mathematical Journal, 2016, 56 : 251 - 267
  • [32] A SIEVE METHOD FOR SHIFTED CONVOLUTION SUMS
    Holowinsky, Roman
    DUKE MATHEMATICAL JOURNAL, 2009, 146 (03) : 401 - 448
  • [33] The spectral decomposition of shifted convolution sums
    Blomer, Valentin
    Harcos, Gergely
    DUKE MATHEMATICAL JOURNAL, 2008, 144 (02) : 321 - 339
  • [34] Shifted convolution sums for SL(m)
    Hu, Guangwei
    Lu, Guangshi
    MANUSCRIPTA MATHEMATICA, 2020, 163 (3-4) : 375 - 394
  • [35] HECKE OPERATORS AND MAASS FORMS - APPLICATION OF THE TRACE FORMULA
    BLASIUS, D
    CLOZEL, L
    RAMAKRISHNAN, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 306 (02): : 59 - 62
  • [36] A note on the Fourier coefficients of Hecke-Maass forms
    Tang, Hengcai
    JOURNAL OF NUMBER THEORY, 2013, 133 (04) : 1156 - 1167
  • [37] Quantum Variance of Maass-Hecke Cusp Forms
    Peng Zhao
    Communications in Mathematical Physics, 2010, 297 : 475 - 514
  • [38] On Hecke eigenvalues of Siegel modular forms in the Maass space
    Gun, Sanoli
    Paul, Biplab
    Sengupta, Jyoti
    FORUM MATHEMATICUM, 2018, 30 (03) : 775 - 783
  • [39] Quantum Variance of Maass-Hecke Cusp Forms
    Zhao, Peng
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (02) : 475 - 514
  • [40] Resonances and Ω-results for exponential sums related to Maass forms for SL(n, Z)
    Ernvall-Hytonen, Anne-Maria
    Jaasaari, Jesse
    Vesalainen, Esa V.
    JOURNAL OF NUMBER THEORY, 2015, 153 : 135 - 157