A Novel Method Based on CNN-LSTM to Characterize Knee Osteoarthritis from Radiography

被引:0
|
作者
Malathi S.Y. [1 ]
Bharamagoudar G.R. [1 ]
机构
[1] Department of Computer Science and Engineering, KLE Institute of Technology Hubballi, Karnataka, Hubballi
关键词
Deep learning; Knee osteoarthritis; Radiography; X-ray;
D O I
10.1007/s40011-023-01545-5
中图分类号
学科分类号
摘要
This is particularly true for the senior population, whose quality of life has been drastically reduced as a result of the increasing incidence of several health problems. Over 27 million people in the United States suffer from osteoarthritis of the knee (OAK), a painful condition that may severely limit mobility. When the articular cartilage between the tibia and femur in the knee is damaged, osteoarthritis of the knee develops. OAK symptoms include a loss of mobility and the inability to walk normally due to knee pain, detected using an X-ray. We detail here a novel method of evaluating the severity of knee osteoarthritis (OA) by X-ray analysis. Modern methods are comprised of pre-processing, feature extraction using a convolutional neural network (CNN), and classification with latent semantic modeling (LSM) (LSTM). Data from the osteoarthritis initiatives (OAI) database, which is available to the public, was utilized to evaluate the methodology proposed. The current method has been shown to be effective, and the OAI database has information on KL grade assessment for both knees. OAK is the subject of state-of-the-art, global observational investigation by experts using a program called OAI. This collection was created to serve as a one-stop shop for researchers seeking the scholarly materials they need to systematically examine OA indicators as a possible endpoint for the advanced stages of the illness. The statistics reveal a mean accuracy of 100%. When compared to earlier deep learning approaches, these outcomes are much superior. © The Author(s), under exclusive licence to The National Academy of Sciences, India 2024.
引用
收藏
页码:423 / 438
页数:15
相关论文
共 50 条
  • [21] A Prediction Method for Fuel Cell Degradation Based on CNN-LSTM Hybrid Model
    Zhang, Yufan
    Li, Yuren
    Liang, Bo
    Ma, Rui
    2022 25TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2022), 2022,
  • [22] A Detection Method of Electricity Stealing Behavior of Charging Pile Based on CNN-LSTM
    Cheng Nuo
    Zheng Peng
    Su Yuquan
    2021 3RD ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM (AEEES 2021), 2021, : 655 - 659
  • [23] An intelligent network traffic prediction method based on Butterworth filter and CNN-LSTM
    Hu, Xueyan
    Liu, Wei
    Huo, Hua
    COMPUTER NETWORKS, 2024, 240
  • [24] An Attention-Based CNN-LSTM Method for Effluent Wastewater Quality Prediction
    Li, Yue
    Kong, Bin
    Yu, Weiwei
    Zhu, Xingliang
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [25] Comparison of CNN and CNN-LSTM Algorithms based on Earthquake Magnitude Estimation
    Wang, Haomiao
    Wang, Huaixiu
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2694 - 2698
  • [26] Prediction of hourly air temperature based on CNN-LSTM
    Hou, Jingwei
    Wang, Yanjuan
    Zhou, Ji
    Tian, Qiong
    GEOMATICS NATURAL HAZARDS & RISK, 2022, 13 (01) : 1962 - 1986
  • [27] A Novel Method CNN-LSTM Ensembler Based on Black Widow and Blue Monkey Optimizer for Electricity Theft Detection
    Almazroi, Abdulwahab Ali
    Ayub, Nasir
    IEEE ACCESS, 2021, 9 : 141154 - 141166
  • [28] Vehicle Road Grade Prediction Based on CNN-LSTM
    Qin, Tang
    Yao, Zhuoxiao
    Fan, Honggang
    Xia, Ran
    Chen, Tao
    IFAC PAPERSONLINE, 2023, 56 (02): : 3066 - 3071
  • [29] Projectile Trajectory Prediction Based on CNN-LSTM Model
    Zheng Z.
    Guan X.
    Fu J.
    Ma X.
    Yin S.
    Binggong Xuebao/Acta Armamentarii, 2023, 44 (10): : 2975 - 2983
  • [30] A Novel Method CNN-LSTM Ensembler Based on Black Widow and Blue Monkey Optimizer for Electricity Theft Detection
    Almazroi, Abdulwahab Ali
    Ayub, Nasir
    IEEE Access, 2021, 9 : 141154 - 141166