Opportunistic Activity Recognition in IoT Sensor Ecosystems via Multimodal Transfer Learning

被引:0
|
作者
Oresti Banos
Alberto Calatroni
Miguel Damas
Hector Pomares
Daniel Roggen
Ignacio Rojas
Claudia Villalonga
机构
[1] Research Center for Information and Communication Technologies of the University of Granada (CITIC-UGR),Department of Computer Architecture and Computer Technology
[2] Bonsai Systems GmbH,Sensor Technology Research Centre
[3] University of Sussex,School of Engineering and Technology
[4] Universidad Internacional de la Rioja,undefined
来源
Neural Processing Letters | 2021年 / 53卷
关键词
Transfer learning; Multimodal sensors; Wearable sensors; Ambient sensors; Activity recognition; Human–computer Interaction;
D O I
暂无
中图分类号
学科分类号
摘要
Recognizing human activities seamlessly and ubiquitously is now closer than ever given the myriad of sensors readily deployed on and around users. However, the training of recognition systems continues to be both time and resource-consuming, as datasets must be collected ad-hoc for each specific sensor setup a person may encounter in their daily life. This work presents an alternate approach based on transfer learning to opportunistically train new unseen or target sensor systems from existing or source sensor systems. The approach uses system identification techniques to learn a mapping function that automatically translates the signals from the source sensor domain to the target sensor domain, and vice versa. This can be done for sensor signals of the same or cross modality. Two transfer models are proposed to translate recognition systems based on either activity templates or activity models, depending on the characteristics of both source and target sensor systems. The proposed transfer methods are evaluated in a human–computer interaction scenario, where the transfer is performed in between wearable sensors placed at different body locations, and in between wearable sensors and an ambient depth camera sensor. Results show that a good transfer is possible with just a few seconds of data, irrespective of the direction of the transfer and for similar and cross sensor modalities.
引用
收藏
页码:3169 / 3197
页数:28
相关论文
共 50 条
  • [21] Activity Recognition Using Transfer Learning
    Chen, Wen-Hui
    Cho, Po-Chuan
    Jiang, Yong-Lin
    SENSORS AND MATERIALS, 2017, 29 (07) : 897 - 904
  • [22] Wearable IoT Sensor Combining Deep Learning for Enhanced Human Activity Recognition in Indoor and Outdoor Settings
    Mhalla, Ala
    Favreau, Jean-Marie
    UBIQUITOUS NETWORKING, UNET 2023, 2024, 14757 : 43 - 53
  • [23] Multimodal Emotion Recognition on RAVDESS Dataset Using Transfer Learning
    Luna-Jimenez, Cristina
    Griol, David
    Callejas, Zoraida
    Kleinlein, Ricardo
    Montero, Juan M.
    Fernandez-Martinez, Fernando
    SENSORS, 2021, 21 (22)
  • [24] Robust face recognition using multimodal data and transfer learning
    Srivastava, Akhilesh Mohan
    Chintaginjala, Sai Dinesh
    Bhogavalli, Samhit Chowdary
    Prakash, Surya
    JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (04)
  • [25] IoT Wearable Sensor and Deep Learning: An Integrated Approach for Personalized Human Activity Recognition in a Smart Home Environment
    Bianchi, Valentina
    Bassoli, Marco
    Lombardo, Gianfranco
    Fornacciari, Paolo
    Mordonini, Monica
    De Munari, Ilaria
    IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (05): : 8553 - 8562
  • [26] Uncovering Human Multimodal Activity Recognition with a Deep Learning Approach
    Ranieri, Caetano M.
    Vargas, Patricia A.
    Romero, Roseli A. F.
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [27] Towards Multimodal Deep Learning for Activity Recognition on Mobile Devices
    Radu, Valentin
    Lane, Nicholas D.
    Bhattacharya, Sourav
    Mascolo, Cecilia
    Marina, Mahesh K.
    Kawsar, Fahim
    UBICOMP'16 ADJUNCT: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING, 2016, : 185 - 188
  • [28] Modality aware contrastive learning for multimodal human activity recognition
    Dixon, Sam
    Yao, Lina
    Davidson, Robert
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (16):
  • [29] Deep Transfer Learning Using Class Augmentation for Sensor-Based Human Activity Recognition
    Kondo, Kazuma
    Hasegawa, Tatsuhito
    IEEE SENSORS LETTERS, 2022, 6 (10)
  • [30] Knowledge Transfer in Activity Recognition Using Sensor Profile
    Chiang, Yi-ting
    Hsu, Jane Yung-jen
    2012 9TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INTELLIGENCE & COMPUTING AND 9TH INTERNATIONAL CONFERENCE ON AUTONOMIC & TRUSTED COMPUTING (UIC/ATC), 2012, : 180 - 187