Potential energy surfaces of even–even superheavy nuclei are evaluated within the macroscopic-microscopic approximation. A very rapidly converging analytical Fourier-type shape parametrization is used to describe nuclear shapes throughout the periodic table, including those of fissioning nuclei. The Lublin Strasbourg Drop and another effective liquid-drop type mass formula are used to determine the macroscopic part of nuclear energy. The Yukawa-folded single-particle potential, the Strutinsky shell-correction method, and the BCS approximation for including pairing correlations are used to obtain microscopic energy corrections. The evaluated nuclear binding energies, fission-barrier heights, and Qα\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q_\alpha $$\end{document} energies show a relatively good agreement with the experimental data. A simple one-dimensional WKB model à la Świa̧tecki is used to estimate spontaneous fission lifetimes, while α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha $$\end{document} decay probabilities are obtained within a Gamow-type model.