Conductance quantization in multiwalled carbon nanotubes

被引:0
|
作者
Ph. Poncharal
St. Frank
Z.L. Wang
W.A. de Heer
机构
[1] School of Physics,
[2] Georgia Institute of Technology,undefined
[3] Atlanta,undefined
[4] GA 30332,undefined
[5] USA,undefined
[6] School of Materials Science and Engineering,undefined
[7] Georgia Institute of Technology,undefined
[8] Atlanta,undefined
[9] GA 30332,undefined
[10] USA,undefined
关键词
PACS: 85.40.-e Microelectronics: LSI, VLSI, ULSI: integrated circuit fabrication technology – 61.46.+w Clusters, nanoparticles, and nanocrystalline materials;
D O I
暂无
中图分类号
学科分类号
摘要
We present results of carbon nanotube conductance measurements. The experiments were performed using an scanning probe microscope (SPM) system where a carbon nanotube fiber is connected to the SPM tip and then lowered into a liquid mercury contact. Experiments were also performed using a modified transmission electron microscope (TEM) specimen holder supplied with piezo and micrometer positioning system. Thus the contacting process of the nanotubes with the mercury could be monitored while simultaneously recording the conductance. These measurements and observations confirm previously reported conductance quantization (Frank et al.: Science 280, 1744 (1998)) of the nanotubes while providing additional details concerning the mercury nanotube contacts. We also report conductance versus voltage characteristics of carbon nanotubes.
引用
收藏
页码:77 / 79
页数:2
相关论文
共 50 条
  • [21] Quantum conductance steps in solutions of multiwalled carbon nanotubes -: art. no. 106603
    Urbina, A
    Echeverría, I
    Pérez-Garrido, A
    Díaz-Sánchez, A
    Abellán, J
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (10)
  • [22] Antilocalization in multiwalled carbon nanotubes
    Liu, K
    Roth, S
    Düsberg, GS
    Kim, GT
    Popa, D
    Mukhopadhyay, K
    Doome, R
    Nagy, JB
    [J]. PHYSICAL REVIEW B, 2000, 61 (03): : 2375 - 2379
  • [23] Physics of multiwalled carbon nanotubes
    Schönenberger, C
    Forró, L
    [J]. PHYSICS, CHEMISTRY AND APPLICATION OF NANOSTRUCTURES: REVIEWS AND SHORT NOTES TO NANOMEETING-2001, 2001, : 86 - 93
  • [24] Phonons in multiwalled carbon nanotubes
    Popov, VN
    Henrard, L
    [J]. STRUCTURAL AND ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES, 2002, 633 : 425 - 428
  • [25] On the unzipping of multiwalled carbon nanotubes
    dos Santos, R. P. B.
    Perim, E.
    Autreto, P. A. S.
    Brunetto, Gustavo
    Galvao, D. S.
    [J]. NANOTECHNOLOGY, 2012, 23 (46)
  • [26] Synthesis of multiwalled carbon nanotubes
    Jacques, D
    Villain, S
    Rao, AM
    Andrews, R
    Derbyshire, F
    Dickey, EC
    Qian, DL
    [J]. AMORPHOUS AND NANOSTRUCTURED CARBON, 2000, 593 : 15 - 20
  • [27] Electrical conductance and breakdown in individual CNx multiwalled nanotubes
    Burch, Hilary J.
    Davies, Julia A.
    Brown, Elisabetta
    Hao, Ling
    Contera, Sonia Antoranz
    Grobert, Nicole
    Ryan, J. F.
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (14)
  • [28] Functionalization of multiwalled carbon nanotubes and related polyimide/carbon nanotubes composites
    Yang, Fengchun
    Li, Yanfeng
    Zhang, Shujiang
    Tao, Ma
    Zhao, Jiujiang
    Hang, Congshu
    [J]. SYNTHETIC METALS, 2010, 160 (15-16) : 1805 - 1808
  • [29] Chemical oxidation of multiwalled carbon nanotubes
    Datsyuk, V.
    Kalyva, M.
    Papagelis, K.
    Parthenios, J.
    Tasis, D.
    Siokou, A.
    Kallitsis, I.
    Galiotis, C.
    [J]. CARBON, 2008, 46 (06) : 833 - 840
  • [30] Dispersion of Functionalized Multiwalled Carbon Nanotubes
    Clark, Michael D.
    Krishnamoorti, Ramanan
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (49): : 20861 - 20868