New multivalued F-contraction mappings involving α-admissibility with an application

被引:0
|
作者
Dur-e-Shehwar Sagheer
Samina Batul
Isma Urooj
Hassen Aydi
Santosh Kumar
机构
[1] Capital University of Science and Technology,Department of Mathematics
[2] Université de Sousse,Institut Supérieur d’Informatique et des Techniques de Communication
[3] China Medical University,China Medical University Hospital
[4] Sefako Makgatho Health Sciences University,Department of Mathematics and Applied Mathematics
[5] University of Dar es Salaam,Department of Mathematics, College of Natural and Applied Sciences
关键词
Partial ; -metric space (P; MS); -admissible mappings; Multivalued contraction mapping (MVCM); 47H10; 54H25;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we obtain some fixed-point results involving α-admissibility for multivalued F-contractions in the framework of partial b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{b}$\end{document}-metric spaces. Appropriate illustrations are provided to support the main results. Finally, an application is developed by demonstrating the existence of a solution to an integral equation.
引用
收藏
相关论文
共 50 条
  • [31] On a new generalization of a Perov-type F-contraction with application to a semilinear operator system
    Sarwar, Muhammad
    Shah, Syed Khayyam
    Abodayeh, Kamaleldin
    Khan, Arshad
    Altun, Ishak
    FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2024, 2024 (01):
  • [32] Perov Fixed-Point Results on F-Contraction Mappings Equipped with Binary Relation
    Din, Fahim Ud
    Din, Muhammad
    Ishtiaq, Umar
    Sessa, Salvatore
    MATHEMATICS, 2023, 11 (01)
  • [33] F-contraction via (CLR)-property and application to integral equations
    Farah Rashidi
    Maryam Shams
    Boletín de la Sociedad Matemática Mexicana, 2021, 27
  • [34] BEHIND THE CONCEPT OF F-CONTRACTION
    Cvetkovic, Marija
    FIXED POINT THEORY, 2024, 25 (02): : 519 - 530
  • [35] Multivalued weak cyclic δ-contraction mappings
    Konar, Pulak
    Bhandari, Samir Kumar
    Chandok, Sumit
    Mukheimer, Aiman
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [36] Multivalued weak cyclic δ-contraction mappings
    Pulak Konar
    Samir Kumar Bhandari
    Sumit Chandok
    Aiman Mukheimer
    Journal of Inequalities and Applications, 2020
  • [37] On the Banach contraction principle for multivalued mappings
    Andres, J
    Górniewicz, L
    APPROXIMATION, OPTIMIZATION AND MATHEMATICAL ECONOMICS, 2001, : 1 - 23
  • [38] F-contraction via (CLR)-property and application to integral equations
    Rashidi, Farah
    Shams, Maryam
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (03):
  • [39] Fixed Point of (α, β)-Admissible Generalized Geraghty F-Contraction with Application
    Wang, Min
    Saleem, Naeem
    Liu, Xiaolan
    Ansari, Arslan Hojat
    Zhou, Mi
    SYMMETRY-BASEL, 2022, 14 (05):
  • [40] Existence of solution for orthogonal F-contraction mappings via Picard-Jungck sequences
    Chandok, Sumit
    Radenovic, Stojan
    JOURNAL OF ANALYSIS, 2022, 30 (02): : 677 - 690