Rate of convergence of nonlinear integral operators for functions of bounded variation

被引:0
|
作者
Harun Karsli
Vijay Gupta
机构
[1] Abant Izzet Baysal University,Faculty of Science and Arts, Department of Mathematics
[2] School of Aplied Sciences,Netaji Subhas Institute of Technology, Azad Hind Fauj Marg
来源
Calcolo | 2008年 / 45卷
关键词
Rate of convergence; nonlinear integral operator; locally compact Abelian group; Haar integral; bounded variation; 41A25; 41A36; 41-41; 47G10;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to study the behavior of the operators Tλ defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T_\lambda (f;x) = \int\limits_a^b {K_\lambda (t - x,f(t))dt,x \in < a,b > .} $$\end{document}. Here we estimate the rate of convergence at a point x, which has a discontinuity of the first kind as λ → λ0. This study is an extension of the papers [9] and [13], which includes Bernstein operators. Beta operators, Picard operators, Philips operators, Durrmeyer operators, etc. as special cases.
引用
收藏
页码:87 / 98
页数:11
相关论文
共 50 条