A multidimensional global monopole and nonsingular cosmology

被引:0
|
作者
K. A. Bronnikov
B. E. Meierovich
机构
[1] Russian Research Institute for Metrological Service,Center for Gravitation and Fundamental Metrology
[2] Peoples Friendship University of Russia,Institute of Gravitation and Cosmology
[3] Russian Academy of Sciences,Kapitza Institute for Physical Problems
关键词
Dark Matter; Dark Energy; Cosmological Model; Singular Solution; Higgs Field;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a spherically symmetric global monopole in general relativity in (D=d+2)-dimensional space-time. For γ<d−1, where γ is a parameter characterizing the gravitational field strength, the monopole is shown to be asymptotically flat up to a solid angle defect. In the range d−1< γ<2d(d+1)/(d+2), the monopole space-time contains a cosmological horizon. Outside the horizon, the metric corresponds to a cosmological model of the Kantowski-Sachs type, where spatial sections have the topology ℝ × Sd. In the important case where the horizon is far from the monopole core, the temporal evolution of the Kantowski-Sachs metric is described analytically. The Kantowski-Sachs space-time contains a subspace with a (d+1)-dimensional Friedmann-Robertson-Walker metric, whose possible cosmological application is discussed. Some estimates in the d=3 case show that this class of nonsingular cosmologies can be viable. In particular, the symmetry-breaking potential at late times can give rise to both dark matter and dark energy. Other results, generalizing those known in 4-dimensional space-time, are derived, in particular, the existence of a large class of singular solutions with multiple zeros of the Higgs field magnitude.
引用
收藏
页码:1 / 9
页数:8
相关论文
共 50 条
  • [41] Tracing primordial black holes in nonsingular bouncing cosmology
    Chen, Jie-Wen
    Liu, Junyu
    Xu, Hao-Lan
    Cai, Yi-Fu
    PHYSICS LETTERS B, 2017, 769 : 561 - 568
  • [42] Evolution of metric perturbations in a model of nonsingular inflationary cosmology
    Cai, Yi-Fu
    Zhang, Xinmin
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2009, (06):
  • [43] Vector fields in multidimensional cosmology
    Meierovich, Boris E.
    PHYSICAL REVIEW D, 2011, 84 (06):
  • [44] Multidimensional Cosmology and Asymptotical AdS
    U. Günther
    P. Moniz
    A. Zhuk
    Astrophysics and Space Science, 2003, 283 : 679 - 684
  • [45] FLUID OF MULTIDIMENSIONAL OBJECTS IN COSMOLOGY
    MASZCZYK, RA
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (11) : 3141 - 3147
  • [46] Quantum noncommutative multidimensional cosmology
    Khosravi, N.
    Jalalzadeh, S.
    Sepangi, H. R.
    GENERAL RELATIVITY AND GRAVITATION, 2007, 39 (07) : 899 - 911
  • [47] Multidimensional cosmology and asymptotical ads
    Günther, U
    Moniz, P
    Zhuk, A
    ASTROPHYSICS AND SPACE SCIENCE, 2003, 283 (04) : 679 - 684
  • [48] Inflation in multidimensional quantum cosmology
    Carugno, E
    Litterio, M
    Occhionero, F
    Pollifrone, G
    PHYSICAL REVIEW D, 1996, 53 (12): : 6863 - 6874
  • [49] THE DIMENSIONAL REDUCTION IN A MULTIDIMENSIONAL COSMOLOGY
    DEMIANSKI, M
    GOLDA, ZA
    HELLER, M
    SZYDLOWSKI, M
    CLASSICAL AND QUANTUM GRAVITY, 1986, 3 (06) : 1199 - 1205
  • [50] MULTIDIMENSIONAL COSMOLOGY AND FUNDAMENTAL CONSTANTS
    Melnikov, V. N.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2009, 24 (8-9): : 1473 - 1480